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LOAD-EQUIVALENCE PARAMETERS 
FOR DYNAMIC LOADING OF STRUCTURES 

IN THE PLASTIC RANGE 

by 

Carl K. Youngdahl 

ABSTRACT 

This report examines the solutions to four c lassical 
problems in dynamic plas t ic i ty--c i rcular plate under uni
form p re s su re , the reinforced circular cylindrical shell 
under uniform p re s su re , the free-free beam with a central 
concentrated force, and the circular cylindrical shell with a 
ring load--to determine the effect of pulse shape on final 
plastic deformation. It is found that there is a strong depend
ence on pulse shape for pulses having the same total impulse 
and maximum load; however, the effect of the pulse shape is 
virtually eliminated if the pulses have the same total impulse 
and effective load. The effective load is defined as the im
pulse divided by twice the mean time of the pulse, where the 
mean time is the interval between the onset of plastic defor
mation and the centroid of the pulse. 

I. INTRODUCTION 

When experiments are performed to determine the plastic deforma
tion of a s tructure produced by a dynamic loading that exceeds the yield 
load only for a short interval, it is important to know the effect of the pulse 
shape on the final deformation. This is part icularly true in reactor accident 
simulations, where it is impossible or impract ical to reproduce the actual 
loading conditions in an out-of-pile experiment, 

Symonds, inhis t reatment of a free-free beamt acted on by a con
centrated dynamic load, concluded that the final deformation for any load 
shape was essential ly dependent only on the impulse and peak load, within 
an e r r o r of about 15%. However, his conclusion was based on loadings 
greatly in excess of the yield load, when the shape of the load is not impor
tant; the e r r o r s for loadings that produce only small plastic deformation 
are much larger . Hodge^ showed that final deformation of a reinforced 
ci rcular shell under uniform dynamic p ressu re was strongly dependent on 
the pulse shape, Perzyna^ extended the solution of Hopkins and Prager* 
for a c i rcular plate under uniform dynamic p re s su re with a rectangular 



pulse shape to a more general class of pulse shapes and concluded that the 
influence of the shape on the final deflection was small. However, his con
clusion was based on results for shapes that were close to the rectangular 
Dulse in form. The analysis of Eason and Shield for a long circular shell 
acted on by a dynamic ringload was extended by the author • to a rb i t ra ry 
nulse shapes It was found that although the peak load and impulse did not 
provide an accurate means of eliminating the effect of the pulse shape on 
L final deformation, an effective load could be determined which together 
with the impulse, essentially collapsed the final deformation resul ts onto 

one curve. 

It will be shown here that the impulse and an effective load can be 
used to determine the final plastic deformation for each of the above prob
lems. For a load £(t), which may be a p re s su re , concentrated force, ring 
load, etc., the associated total impulse is given by 

i^(t) dt. (1) 

where ty and tf are the times when plastic deformation begins and ends. 
The effective load is defined by 

£ - I (2) 
i .g - 2t ' * ' ^^mean 

where tmean is the location of the centroid of the pulse and is given by 

(t - ty) Z{t) dt. (3) 1 r'i 
I 

V 
uy when p] 

reaches the static yield load Zy and is consequently a known quantity. The 
time tf when plastic deformation ends is not known a pr ior i , but it can be 
shown that 

I = £y(tf- ty) , (4) 

from which tf can be found. Relation 4 is exact for the free-free beam, 
reinforced-circular-shell , and c i rcular-pla te problems and is an approxi
mation for the circular shell with a ringload. Each of the pa ramete r s I 
and i g depends only on integrals of the loading and is insensitive to small 
perturbations in pulse shape. This is encouraging for experimental appli
cations because, by contrast, peak loads and pulse durations are difficult 
to reproduce and measure accurately. 
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In what follows, the problems of the circular plate acted on by a 
uniform p re s su re , the reinforced circular shell under uniform p re s su re , 
the free-free beam with a concentrated central force, and the long circular 
shell with a ringload will be discussed briefly.* For each problem, the 

maximum plastic deformation divided 
by the square of the impulse is plotted 
as a function of the peak load and ef
fective load for the standard pulse 
shapes given in Fig. Ib-f. It will be 
seen that there is a dependence on 
the pulse shape evident in the figures 
where the peak load is the parameter , 
but that this dependence is essentially 
eliminated if the effective load is 
used; i .e,. 

(0 ) GENERAL (b) RECTANGULAR 

W 

L I N E A R DECAY ( d ) EXPONENTIAL DECAY 

mf I'HZe). (5) 

^m 

TRIANGULAR 

Fig. 1. Pulse Shapes. ANL Neg. No. 113-3102. 

w h e r e Wĵ f̂ i s the m a x i m u m final 
d e f o r m a t i o n and f i s a function tha t 
depends on the p r o b l e m conf igu ra t ion . 
C l o s e d - f o r m so lu t ions for the g e n e r a l 
pu l se shape of F i g . l a a r e a v a i l a b l e 
for the c i r c u l a r - p l a t e and r e i n f o r c e d -
c i r c u l a r - s h e l l p r o b l e m s . In t h e s e 
c a s e s , it i s shown a n a l y t i c a l l y tha t 
r e l a t i o n 5 i s exac t for s m a l l v a l u e s 
of ( £e - Zy)/Zy and is a s y m p t o t i c a l l y 

t r u e for l a r g e v a l u e s . The f i g u r e s i nd i ca t e ftiat the e r r o r in the a p p r o x i 
m a t i o n in the i n t e r m e d i a t e r a n g e i s s m a l l . 

The m a t e r i a l in e a c h of the four p r o b l e m s is a s s u m e d to be r ig id 
and p e r f e c t l y p l a s t i c , and i d e a l i z e d yie ld funct ions a r e u sed . The u s e of 
s u c h a s s u m p t i o n s h a s p r o v e n to be v e r y frui tful in s t a t i c l i m i t - l o a d a n a l y 
s i s , w h e r e the bounding t h e o r e m s p r o v i d e a m e a n s of b r a c k e t i n g the r e s u l t s 
c o r r e s p o n d i n g t o a m o r e r e a l i s t i c m a t e r i a l b e h a v i o r . B e c a u s e t h e r e a r e no 
a n a l o g o u s t h e o r e m s for d y n a m i c p l a s t i c d e f o r m a t i o n , the app l i ca t ion of the 
i d e a l i z e d a s s u m p t i o n s on m a t e r i a l b e h a v i o r i s open to q u e s t i o n . The e x p e r i 
m e n t a l v e r i f i c a t i o n or r e j e c t i o n of the i m p u l s e and effect ive load a s c o r r e l a 
t ion p a r a m e t e r s for f inal p l a s t i c d e f o r m a t i o n would a l s o i m p l y the v e r i f i c a t i o n 
or r e j e c t i o n of the u s e f u l n e s s of the r ig id , p e r f e c t l y p l a s t i c m a t e r i a l m o d e l 
for d y n a m i c a n a l y s i s . 

*Details of the analyses may be found in the references cited for each problem and the appendixes of this 
report. 



II, C I R C U L A R - P L A T E P R O B L E M 

Cons ider a thin c i r c u l a r p la te of r a d i u s R and s u r f a c e dens i ty fi, 

which i s loaded by a un i fo rm p r e s s u r e P( t ) a s in F i g . 2a. Le t the p l a t e be 

m a d e of a r ig id , pe r f ec t ly p l a s t i c m a t e r i a l tha t obeys the T r e s c a yie ld con

dit ion of F ig . 3a, where Mj. i s the r a d i a l bending m o m e n t and M0 i s the 

i ) 11111 11 rrrr 
£ T 2̂  

W.tjLt,i''rrrrm, 

..IwHrAvtrg 

\ v \ \ v \ v \ \ \ \ \ \ \ \ 1 
^ ( t ) 

K \ \ \ \ \ \ \ ' \ \ \ \ \ v \ ' 

( c ) ( d ) 

Fig. 2. Problem Configurations: (a) Circular plate loaded by a uniform pressure; (b) Reinforced circular 
cylindrical shell, loaded by a uniform pressure; (c) Free-free beam loaded by a concentrated force; 
and (d) Circular cylindrical shell loaded by a ring of concentrated force. ANL Neg. No. 113-3113. 

(1/4 (T, H2, tr,H) 

Fig. 3. Yield Conditions; (a) Tresca yield condition for circular-plate problem; and 
(b) Limited-interaction yield condition for circular-cylindrical-shell problems. 
ANL Neg. No. 113-3108 Rev. 1. 



c i r c u m f e r e n t i a l bending m o m e n t . The exac t so lu t ion to th i s p r o b l e m was 
p r e s e n t e d by Hopkins and P r a g e r ' ' for a r e c t a n g u l a r p u l s e shape (F ig . lb ) , 
P e r z y n a ' c o n s i d e r e d a p u l s e tha t r o s e i n s t a n t a n e o u s l y to i t s m a x i m u m and 
d e c a y e d t h e r e a f t e r . T h e s e r e s u l t s a r e f u r t h e r ex tended in Append ix A to 
obta in a c l o s e d - f o r m so lu t ion for the g e n e r a l pu l s e shape of F i g . l a w h e r e 
the r i s e to the p e a k va lue n e e d not be i n s t a n t a n e o u s , 

A. Load Range P y < P ^ ^ ^ < Pfa 

If the p e a k p r e s s u r e P m a x 1^ g r e a t e r than the s t a t i c y ie ld p r e s s u r e 
P y , g iven by 

6Mo 
(6) 

and l e s s than the p r e s s u r e P b which i n i t i a t e s a mov ing h inge c i r c l e p(t)» 
w h e r e 

P b = 2 P y (7) 

the f inal p l a s t i c d i s p l a c e m e n t at the p la te c e n t e r i s 

w A , . ^ ( . - ^ (8) 

The to t a l i m p u l s e I (per uni t a r e a ) and the effect ive p r e s s u r e Pg a r e 
def ined by 

and 

ntf 

V 
r 

I = I P(t) dt 

2t^ 

(9) 

with 

T/ 
( t - t y ) P( t ) dt. (10) 

Def in i t ions 9 and 10 a r e the s a m e a s E q s , 1-3 with £( t ) s p e c i a l i z e d t o P ( t ) . 
C o n s e q u e n t l y , for loads in the r a n g e P y £ P m a x — ^ P y r e l a t i o n 5 i s e x a c t . 
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The t i m e tf when the d e f o r m a t i o n ends i s d e t e r m i n e d by the so lu t ion 

of 

Py(tf • t y ) P(t) dt. (11) 

4 a s a funct ion of the m a x i -The effective p r e s s u r e is shown in F i g . 
m u m p r e s s u r e for the s t a n d a r d pu l s e s h a p e s of F i g . Ib - f u n d e r the r e s t r i c 
t ion that the t i m e tf at which the p l a s t i c d e f o r m a t i o n c e a s e s can be found 
f rom Eq, 11. 

1 

-

-

^ ^ T 

1 1 1 

RECT/ 

/ L I N / / ' 

/ / X S I N E ^ 

> / ^ ^ ^ ^ ^ ^ E X P . 

1 1 1 1 

-

y^ 

-

Fig. 4 

Effective Pressure as a Function of Maxi
mum Pressure if I = Py(tf - ty). ANL Neg. 
No. 113-3104. 

B . L o a d R a n g e P j . 

4 

'^max/ y 

x > P b 

At t[j, when P f i r s t a t t a i n s the va lue P^^ given by Eq. 7, a h inge 
band of r a d i u s p(t) beg ins to move out f r o m the p l a t e c e n t e r and r e a c h e s 
a m a x i m u m Pniax at '^-m.a.vi' w h e r e P ( t m a x ) = P m a x - The h inge band then 
m o v e s back toward the p la te c e n t e r , a r r i v i n g t h e r e at t^ , wh ich i s found 
f rom 

Pb( tc - tb) 
^ t b 

P t dt. 

Fo r ti3 < t £ tj^^j^, p(t) i s found f r o m 

P ( t ) [ R - p ( t )P [R + p(t)] = 2 P y R ^ 

(12) 

(13) 



For tj^g^x - t £ t^, p(t) is the solution of 

' p ( p ) ^ ^ '̂ ^ ' ( R + p ) ( R - p ) ' 

\with 

(̂p) = p-'( '"'^^ X 
^'^' V(R + P)(R-P)V 

0 s p £ Pmax. tb s /3(p) < t ^ a x . 

(14) 

(15) 

where P " ' is the inverse of P(t) in the interval t)-, £ t £ irnaLX- ̂ ^^ time 
tf is still given by the solution of Eq. 11. Defining 

I* r 
•^tb 

p(t) dt 

and 

n (i*f (t - tb) p(t) dt 

(16) 

analogous to the definitions of I and Pg, we have for the final plastic 
deformation at the plate center 

Wo(tf) = -
P y ' Pe ' A l / VPb ' P*/ 

Note that it is not necessary to solve the cumbersome transcendental 
Eqs. 13 and 14 for p(t) in order to find Wo(tf),'l' Since 

I* - I, P* - Pg as P g / P - 00, 

Eqs. 17 and 7 yield 

Î  fi 
Wo(tf) - ^[-^ 

2 P . 
as P„ 'Py -* <». 

(17) 

(18) 

(19) 

The final plastic deformation at the center of the plate divided by 
the square of the impulse is plotted as a function of Pmax in Fig. 5 and as 
a function of Pg in Fig. 6 for the pulse shapes shown in Fig, Ib-f. The 
figures indicate that there is a significant dependence on the pulse shape 
if the maximum pres su re is used as a parameter , but that this dependence 
almost disappears if Pg is used. The spread in the curves for Pm^x 
close to P is especially large; this is perhaps the range of greates t 
pract ical interest . 

. . . . . ur/. , '''^pend on p(t). 

file:///with
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Fig. 5. Circular-plate Problem; Dependence cf 
Wo{tf)/l2 on Pmax f°' Various Pulse 
Shapes. ANL Neg. No. 113-3111. 

Fig. 6. Circular-plate Problem: Dependence of 
Wo(tf)/I on Pe for Various Pulse 
Shapes. ANL Neg. No. 113-3203. 

An i n t e r e s t i n g side r e s u l t i s tha t Eq, 11 h a s the i n t e r p r e t a t i o n tha t 
the a v e r a g e value of the load over the d u r a t i o n of p l a s t i c d e f o r m a t i o n i s 
the yield load, and Eq. 12 has the i n t e r p r e t a t i o n tha t t he a v e r a g e v a l u e of 
the load over the t i m e i n t e r v a l in which the h inge c i r c l e m o v e s i s the 
ini t ia t ing load for th is mot ion. 

III. REINFORCED CIRCULAR CYLINDRICAL S H E L L 

Cons ide r an inf in i te ly long c i r c u l a r c y l i n d r i c a l s h e l l , r e i n f o r c e d by 
equal ly spaced r e in fo rc ing r i n g s and s u b j e c t e d to a t i m e - d e p e n d e n t , u n i 
fo rmly d i s t r i b u t e d r a d i a l p r e s s u r e (F ig . 2b). Le t A, H, and Oy be the 
shel l r a d i u s , t h i c k n e s s , and y ie ld s t r e s s , r e s p e c t i v e l y , and 2L be the 
d i s t ance be tween r e i n f o r c i n g r i n g s . Only the t y p i c a l h a l f - b a y 0 £ z £ L 
need be c o n s i d e r e d . A s s u m e the she l l m a t e r i a l i s r i g i d and p e r f e c t l y 
p l a s t i c and obeys the l imi t ed i n t e r a c t i o n y ie ld cond i t ion sho^wn in F i g , 3b, 
whe re N0 and M^ a r e the c i r c u m f e r e n t i a l s t r e s s r e s u l t a n t and a x i a l 
bending s t r e s s r e s u l t a n t a c r o s s the she l l t h i c k n e s s . Hodge^ ob ta ined a 
c l o s e d - f o r m solut ion to th i s p r o b l e m for p u l s e s tha t r i s e i n s t a n t a n e o u s l y 
to a m a x i m u m and d e c a y t h e r e a f t e r . T h i s r e s u l t i s b r o a d e n e d in Append ix B 
to include a c l o s e d - f o r m so lu t ion for t he g e n e r a l p u l s e shape shown in 
F ig . l a . 

The s t a t i c yield p r e s s u r e P y i s g iven by 

P y = P o | l + ^ ^ ^ (20) 



where 

Po = ^ . (21) 

The p re s su re Pb at which a hinge band would begin to form in the vicinity 
of z = L is given by 

Pb = 3Py - 2Po. (22) 

A. Load Range Py a P ^ ^ ^ < P,, 

For peak loads between Py and Pb, hinge circles are formed at 
z = 0 and z = L at the time ty when the yield p ressure is first attained. 
The maximum radial velocity V L and radial displacement W L occur at 
z = L. Corresponding to relation 4, the time tf when the deformation ends 
is the solution of 

rH 
Py( t f - ty) = / P(t) dt (23) 

which resul ts from 

VL(tf) = 0, tf >ty . (24) 

The final plastic displacement at the bay midpoint is 

31^ / Py 

where the impulse I (per unit area) and the effective p ressure Pg are 
defined as in Eqs. 9 and 10, and fi is the surface density of the shell 
mater ia l . As in the circular plate solution, for loads in the range 
Py £ Pmax - Pb ' relation 5 is exact. 

B. Load Range P^^^^ > P^ 

A hinge band begins to form in the region ^(t) £ z £ L at t = tî  
when P first attains the value P]^. The maximum width of the band is 
attained at t = i-m^LX. when the p ressure reaches its peak value. The width 
then decreases until ^(t) = L at t = tg, where tg is again found from 
Eq. 12, For tb £ t £ tmax' C(t) is found from 

C^(t)[P(t)-Po] = 3L^(Py-Po). (26) 
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For t £ t £ tg, ^(t) is determined from the solution of 

/-t 
e / [P(^) - Po] dT = 3(Py - Po) [t - m i L^ 

•Jp,(n 

(27) 

'm 
with 

m = p'' Po+3(P„-Po) C m a x £ ? £ L , t m a x a P ( C ) a t b , (28) 

where P ' ' is the inverse of P(t) in the interval tj. Using 
VT (tf) = 0, the solution of Eq. 23 again is found to determine tf. Letting 
I, Pg, I*, and P* be defined as for the circular plate problem, we have 
that the final plastic deformation at the midpoint between reinforcing rings 
is 

WL(tf) = -
4 \P„ 

1 LIE 
4[l 

1 1 
(29) 

As in the circular-plate solution, it is not necessary to solve the awkward 
Eqs, 26 and 27 for the hinge-band motion if only the final maximum defor
mation is desired. The solutions given by Eqs. 17 and 29 are identical 
except for the numerical coefficients. Using relation 18, we have that 

pPy 
W L ( t f ) - : ^ ^ . - ^ - ^ ) a s . 

4Pb 2P, 
(30) 

so that in the limit, as the effective load becomes very large, we again 
arrive at relation 5. The rat io Pb /Py is a function of the shell geometry 
only, found from Eqs. 20-22 to be 

1 + 
A H ' (31) 

In the numerical results given here, A H / L ^ is taken to be 0 4 as in Ref. 2. 

The final plastic deformation of the shell at the midpoint between 
reinforcing rings, divided by the square of the impulse, is shown as a 
function of Pj^^^^ in Fig. 7 and as a function of Pg in Fig. 8 for the pulse 
shapes of Fig. Ib-f, As for the circular-plate solution, the curves a re 
closely bunched if the effective p ressu re is used as the independent va r i 
able, while a strong dependence on the pulse shape is evident if the peak 
pressure is used. 
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Fig. 7. Reinforced-circular-cylindrical-shell 
Problem; 
o" Pmax 
(AH/L^ 
No. 113-3114. 

Dependence of WL(tf)/F 
for Various Pulse Shapes 

= 0.4). ANL Neg. 

Fig. 8. Reinforced-circular-cylindrical-shell 
Problem: Dependence of WL(tf)/l2 
on Pg for Various Pulse Shapes 
(AH/L2 = 0.4). ANL Neg. 

% No. 113-3204. 

IV. F R E E - F R E E BEAM 

C o n s i d e r a f r e e - f r e e b e a m of l eng th 2L loaded at i t s c e n t e r by a 
t i m e - d e p e n d e n t fo rce F( t ) , a s shown in F i g , 2c, A s s u m e the b e a m m a t e 
r i a l i s r i g id and p e r f e c t l y p l a s t i c , and let i t s y ie ld m o m e n t be M|j, S y m o n d s ' 
p r e s e n t e d n u m e r i c a l r e s u l t s for th i s p r o b l e m for the r e c t a n g u l a r , t r i a n 
g u l a r , and h a l f - s i n e p u l s e s h a p e s of F i g . l b , e, and f, r e s p e c t i v e l y . The 
g o v e r n i n g e q u a t i o n s a r e d e r i v e d in Appendix C. Some add i t i ona l n u m e r i c a l 
r e s u l t s for t h e s e s h a p e s and for the l i n e a r d e c a y and exponen t i a l d e c a y 
s h a p e s shown in F i g . Ic and d a r e given h e r e . 

The yie ld load Fy at which a p l a s t i c hinge a p p e a r s at x = 0 i s 
g iven by 

4M„ 
(32) 
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If F(t) attains the value Fjj, where 

Fh = 5.7218Fy, (33) 

at some time tj^ outer hinges form at x = ±^]^, where 

4h = 0.4039L. (34) 

As the loading progresses , these outer hinges move through the positions 
±|(t) until a time tg when they disappear. A closed-form solution for the 
plastic deformation may be obtained for an a rb i t ra ry pulse shape if 
Pmax - P h . but, if Fmax > Ph' °^^y the solution corresponding to a 
rectstngular pulse is available in closed form, 

A, Load Range Fy < Fmax =̂  ^h 

Let Vo(t) and Wo(t) be the t ransverse velocity and deformation of 
the midsection of the beam measured relative to a line through the ends of 
the beam.* The governing differential equations for this load range may be 
integrated in closed form. The time tf when the motion stops is found from 

/ F( t )d t = Fy(tf- ty) , (35) 

V 

which corresponds to relation 4, The final maximum plastic deformation is 

31' /, ^y 

e 
^°('f) = 21TF- 1 - ?^ - (36) 

where the to ta l i m p u l s e I and effect ive fo rce F g a r e def ined a n a l o g o u s to 
E q s . 1, 2, and 3 by 

I = / F( t ) dt, 

(37) 
(Contd. ) 

ti!,n e , ,h " 7"PP°""^' " 1̂̂ ° ̂ '^ ^ 'igidT,ody motion. Symondsl takes the angular deforma-
Zl K " " ' " °' '"" " ' ' ' " " ' ™^^"^ °f '"^ P l ^ ' - deformation. For F„ , , , < F,, 6 and w l ) 
differ only by a constant factor L; but for F^ , , , > F,, the relationship depends on | ( t ) . ' "^^ 



and 

-tf 

( t - t y ) F ( t ) dt. (Contd, ) 
(37) 

C o n s e q u e n t l y , r e l a t i o n 5 i s exac t for F m a x - Ph-

B. Load Range F m a x > P h 

In the t i m e i n t e r v a l ty £ t s th, the d i f f e ren t i a l equa t i ons have a 
c l o s e d - f o r m so lu t ion . In the i n t e r v a l tj^ £ t £ tg, p l a s t i c h i n g e s occu r at 
±C(t). Le t the a n g u l a r v e l o c i t y of the b e a m s e g m e n t * 0 £ x < ^ be tDo(t)> 
and the a n g u l a r ve loc i ty of the s e g m e n t | < x £ L be tDi(t). The coupled 
n o n l i n e a r d i f f e r e n t i a l equa t i ons to be so lved a r e 

"^^0 3 r , ^ , 

dOD] 

dt 

dVo 

dt 

3LF 

7 ( L -

1 
2 

F 

Lv? 

y 
i)' 

+ i 
d o j 

dt (L-? ) 
dtDi 

"dT 

and 

dWo 

"dT 

dt 7^^(0)0-0) , ) 
3 F v L ^— ?F 

(38) 

The t i m e tg is d e t e r m i n e d f r o m the condi t ion tha t (X)o(tc) - '^i(tc)- T h i s 
s y s t e m of e q u a t i o n s i s e a s i l y so lved on a c o m p u t e r . In the t i m e i n t e r v a l 
tg £ t £ tf, t he g o v e r n i n g d i f f e r en t i a l equa t i ons have c l o s e d - f o r m s o l u t i o n s . 
It i s shown in Ref. 1, u s ing c o n s e r v a t i o n of m o m e n t u m , tha t Eq . 35 ho lds 
r e g a r d l e s s of t he p u l s e s h a p e . In o the r w o r d s , even though a c l o s e d - f o r m 
so lu t ion to d i f f e r e n t i a l E q s , 38 cannot be found, r e l a t i o n 4 i s aga in e x a c t . 

The r a t i o Wo(tf)/I^ g iven by Eq, 36 for F ^ ^ ^ ^ < F ^ and by the 
c o m p u t e r so lu t ion of the d i f f e r en t i a l equa t i ons for F m a x — P h ' i^ shown 
a s a funct ion of F m a x and Fg in F i g s , 9 and 10, r e s p e c t i v e l y . The 
r e s e m b l a n c e to the r e s u l t s of the p r e v i o u s two p r o b l e m s i s ev iden t . 

Because of symmetry, only the right half of the beam need be considered. 
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f 0.5 

Fig. 9. Free-free Beam Problem: Dependence 
of Wo(tf)/I^ on Ffnax ^°' Various Pulse 
Shapes, ANL Neg. No, 113-3110. 

s"0.5 

Fig. 10. Free-free Beam Problem; Dependence 
of Wo(tf)/I^ on Fg for Various Pulse 
Shapes. ANL Neg. No. 113-3202. 

V . C I R C U L A R S H E L L W I T H A R I N G L O A D 

C o n s i d e r a n i n f i n i t e l y l o n g c i r c u l a r s h e l l w h i c h i s a x i a l l y u n r e 

s t r a i n e d a n d l o a d e d b y a d y n a m i c c o n c e n t r a t e d r i n g l o a d l ' ( t ) a t t h e c r o s s -

s e c t i o n z = 0 ( F i g , 2d) , A s s u m e t h e m a t e r i a l of t h e s h e l l i s r i g i d a n d 

p e r f e c t l y p l a s t i c a n d o b e y s t h e l i m i t e d - i n t e r a c t i o n y i e l d c o n d i t i o n s h o w n i n 

F i g . 3 b . E a s o n a n d S h i e l d ^ o b t a i n e d a c l o s e d - f o r m s o l u t i o n f o r t h e p l a s t i c 

d e f o r m a t i o n c o r r e s p o n d i n g t o t h e r e c t a n g u l a r p u l s e of F i g . l b a n d g a v e 

n u m e r i c a l r e s u l t s f o r t h e t r i a n g u l a r p u l s e of F i g . l e . T h e a u t h o r ^ ' ^ o b t a i n e d 

a n u m e r i c a l s o l u t i o n f o r a r b i t r a r y p u l s e s h a p e s , i n c l u d i n g t h o s e of F i g . I c , 

d, a n d f. 

T h e s t a t i c l i m i t l o a d 'Fy i s g i v e n b y 

2 a v H 3/2 

i l / 2 
(39) 

where Oy, H, and A a r e the y ie ld s t r e s s , t h i c k n e s s , and r a d i u s of the 

shel l , r e s p e c t i v e l y . B e c a u s e of s y m m e t r y , only the half z s 0 of the s h e l l 

need be c o n s i d e r e d . At t = ty , when the y ie ld load i s f i r s t a t t a i n e d , 

p l a s t i c - h i n g e c i r c l e s a p p e a r a t z = 0 and z = ^y, w h e r e 

AH. (40) 



As the loading p r o g r e s s e s , the ou te r hinge c i r c l e m o v e s t h r o u g h the 
p o s i t i o n s C(t). If, at s o m e t i m e tb , 

n%Kiti,) =i'iy^y. (41) 

the outer hinge c i r c l e b e g i n s to b r o a d e n in to a hinge band occupying the 
r e g i o n Ci(t) £ z £ ^z{t). As the load p a s s e s t h r o u g h a m a x i m u m and then 
d e c r e a s e s , the wid th of the h inge band a t t a i n s i t s m a x i m u m and e v e n t u a l l y 
s h r i n k s to a h inge c i r c l e aga in a t t i m e tg . Unlike the f i r s t two p r o b l e m s 
t r e a t e d h e r e , the o c c u r r e n c e of a hinge band d e p e n d s not only on the 
m a g n i t u d e of the p u l s e but a l s o on i t s s h a p e . F o r i n s t a n c e , i t m a y be shown 
that a h inge band cannot occur for a r e c t a n g u l a r p u l s e ^ o r a n y o the r p u l s e 
shape tha t a t t a i n s i t s m a x i m u m va lue i n s t a n t a n e o u s l y . 

A. Loading Such That "F^ < | 'i'yCy 

If Eq. 41 i s n e v e r s a t i s f i ed du r ing the d e f o r m a t i o n , the ou te r h inge 
l oca t i on ^(t) and the r a d i a l v e l o c i t y and d i s p l a c e m e n t at z = 0, Vo(t) and 
Wo(t), r e s p e c t i v e l y , a r e the so lu t ions of the coupled n o n l i n e a r d i f f e ren t i a l 
equa t i ons 

and 

dt 

dVp 

dt 

dWo 

dt 

1 

1^0 
-21'+ r 

45' 
— - ^, 

Vn 

3C> 

C 

_1 

Cy 

(42) 

w h e r e fx i s the s u r f a c e d e n s i t y of the she l l . The only pu l s e shape for which 
a so lu t ion of E q s . 42 is a v a i l a b l e i s the r e c t a n g u l a r p u l s e . 

B. Loading Such T h a t I' C 2 •^y'^y ^^ ^ tb 

D u r i n g the i n t e r v a l s ty £ t £ tb and tg £ t £ tf when t h e r e i s no 
h inge band , d i f f e r en t i a l E q s , 42 a r e a p p l i c a b l e . F o r tb £ t £ t m a x , the 
i n n e r edge of the h inge band i s g iven by 

Ut) = 
3*vC-ysy 
2'F(t) 

(43) 

while Vo(t), Wo(t), and Vi(t) (which is defined a s V(z , t ) at z = (;i) a r e 
found f r o m the so lu t i ons of the d i f f e r en t i a l equa t i ons 
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dt • p ^ ) = I (*?a - *ŷ y)' 

dVo 4¥ r y ^ y i 

'^-T7'A-^'-y)-

(44) 

(45) 
and 

dWp 
dt 

= Vo. 

Ari a u x i l i a r y function Q(z) i s given by 

MVIC 
Q(Ci) = ^ - ^ + t 

*y 

^ + t, (46) 

t r ea t i ng t as a function of ?i r a t h e r than the r e v e r s e . The ou te r edge of 
the hinge band is then given by 

Q(?2(t)) = t. (47) 

F o r t j^ax £ t £ tg, Eq. 43 no longer a p p l i e s , but Eq, 46 u s e d wi th E q s . 45 
yie lds four r e l a t i o n s for Ci, VQ, Vi, and Wp, whi le ^2 i s s t i l l found f r o m 
Eq, 47. A c l o s e d - f o r m solut ion for an a r b i t r a r y p u l s e s h a p e i s a v a i l a b l e 
for the i n t e r v a l tb £ t £ tg when the hinge band e x i s t s , ' H o w e v e r , s i nce 
the solution is awkward to eva lua te and t h e r e i s no c o r r e s p o n d i n g so lu t ion 
for the in i t i a l and final s t ages of the d e f o r m a t i o n , it i s e a s i e r to so lve the 
en t i re p r o b l e m using a s t a n d a r d c o m p u t e r s u b r o u t i n e for s i m u l t a n e o u s 
d i f ferent ia l equa t ions . 

The n u m e r i c a l r e s u l t s for the quan t i t y Wp(tf)/l^ a r e p lo t t ed a s a 
function of "Fmax and ^g in F i g s , 11 and 12, r e s p e c t i v e l y , for the s t a n d a r d 
pu lse s h a p e s . The to ta l i m p u l s e I (per un i t c i r c u m f e r e n c e ) and the effect ive 
c i r c u m f e r e n t i a l load 'Fg a r e def ined a n a l o g o u s l y to E q s , 1, 2, and 3 by 

*(t) dt , 

(48) 

I 
*e 2t , 

and 

f 

t m ean = Y / (t " ty) "Hit) dt . (49) 

'V 
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Fig. 11 
Circular-cylindrical-shell Problem; Dependence 
of Wo{tf)/l2 on 'i'max fo'̂  Various Pulse Shapes. 
ANL Neg. No. 113-3105 Rev. 1. 

Fig. 12 
Circular-cylindrical-shell Problem: Dependence 
of W()(tf)/l2 on fg for Various Pulse Shapes. ANL 
Neg. No. 113-3112 Rev. 1. 
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f the effective load collapses the 
As for the other three problems, the use « strongly evident if the 
curves, while a dependence on the pulse shape is strong y 
maximum load is used as a parameter. 

^•„^ for this problem, even for the Relation 4 is only an approximation or this p ^^^ ^^^^^^ ^̂  ^^^ 
closed-form solution for t^e rectangular pul^se^^^^P^^. _ ^^^ ^^ ^ . ^ ^.^^^ 

approximation is shown m Fig. 13, wn ^ ^.^^ ^ ^^Jg g^^gt, this rat io 
for the various standard pulse shapes^ ^„„ i„g shapes are close to the curve 
would be unity. The curves for the " ^ ^ ^ ^ X - ' a l expression is available.' 
for the rectangular pulse for which an analytical expres 
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Fig. 13 
Circular-cylindrical-shell Problem: Deviation 
of (tf-ty)1'y/I from Unity for Various Pulse 
Shapes. ANL Neg. No. 113-3106. 

* € / * , 

VI. CONCLUSIONS 

The use of the effective load and total impulse as correlation param
eters is shown to essentially eliminate the dependence on pulse shape of the 
final plastic deformation of four different s t ructural configurations. The ef
fective load and total impulse are easily determined from p re s su re - t ime 
measurements because they involve only integrals of the loading and are con
sequently insensitive to inaccuracies in pressure- t ransducer measurements . 
The material in each of the four problems is assumed to be rigid, perfectly 
plastic. If experiments should fail to confirm correlation 5, it would indicate 
that the rigid-plastic idealization may not be useful in dynamic plasticity. 
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A P P E N D I X A 

C i r c u l a r - p l a t e Solut ion for G e n e r a l P u l s e Shape 

1. I n t roduc t ion 

The d y n a m i c p l a s t i c d e f o r m a t i o n of a s i m p l y s u p p o r t e d c i r c u l a r 
p la te s u b j e c t e d to a u n i f o r m p r e s s u r e * with a r e c t a n g u l a r pu l s e shape is 
d i s c u s s e d e x t e n s i v e l y by Hopkins and P r a g e r . ' ' T h e i r a n a l y s i s wi l l be 
g e n e r a l i z e d to c o v e r the a r b i t r a r y p r e s s u r e pu l s e shape of F ig . 14 for 
which the h i n g e - b a n d nnotion is m o r e c o m p l i c a t e d . Some of the d i s c u s s i o n 
in Ref. 4 on y i e ld cond i t ion , flow r u l e , and p l a s t i c r e g i m e s wi l l be r e p e a t e d 
h e r e to m a k e th i s p r e s e n t a t i o n r e a s o n a b l y c o m p l e t e . 

Fig. 14 
General Pressure Pulse. 
ANLNeg. No. 113-3222. 

2. S t a t e m e n t of P r o b l e m 

Under the u s u a l a s s u m p t i o n s of the s m a l l def lec t ion t h e o r y of thin 
p l a t e s , the equa t ion of m o t i o n of the c i r cu la i ; p la te of F ig . 2a is 

-^{rU^} - M0 = r Q 

r -p+f. i S'w 
r d r . (A . l ) 

w h e r e M^., M 0 , and Q a r e the r a d i a l bending m o m e n t , c i r c u m f e r e n t i a l 
bending m o m e n t , and v e r t i c a l s h e a r fo rce p e r unit a r c length , r e s p e c t i v e l y , 
P is the app l i ed p r e s s u r e , jJ- i s the m a s s p e r uni t s u r f a c e a r e a , and W is 
the d o w n w a r d de f lec t ion of po in t s ly ing in the m i d d l e s u r f a c e . The q u a n t i 
t i e s M , M(j,, Q, and W a r e funct ions of r a d i u s r and t i m e t, whi le P wi l l 
be t a k e n to be a funct ion of t i m e only. Le t the p l a t e r a d i u s be R, the l a t e r a l 
v e l o c i t y of the p l a t e be deno ted by V ( r , t ) , and the r a d i a l and c i r c u m f e r e n t i a l 
r a t e s of c u r v a t u r e be denoted by /Cj. and /c^, r e s p e c t i v e l y . T h en 

*Conroy^ considers a uniform pressure distributed over a central circular region. 
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aw (A.2a) 
a t ' 

S^V (A. 2b) 

' d r ^ ' 

a n d 

K = - — ^ . (A.2c) 
0 r (5r ' 

The locus of points in M^., M 0 space r e p r e s e n t i n g a l l p o s s i b l e y ie ld 
s t a t e s is ca l led the yield locus or y ie ld condi t ion . The T r e s c a y i e l d c o n 
dit ion of F ig . 3a will be used h e r e . The flow r u l e s t a t e s tha t the flow v e c 
tor with components /Cj., ICA is in the d i r e c t i o n of the o u t w a r d p e r p e n d i c u l a r 
to the yield locus at the yield s ta te (M^., M0). 

The th ree p l a s t i c r e g i m e s o c c u r r i n g in the p l a t e u n d e r u n i f o r m load 
a r e point A, s egmen t AB, and point B of F ig . 3a. F r o m the y i e l d condi t ion 
and the flow ru l e , the condi t ions on the bending m o m e n t s and r a t e s of c u r 
va tu re for these r e g i m e s a r e : 

Reg ime A: Mj. = M0 = Mp, /Cj. a 0, (C0 =: 0; (A.3a) 

Reg ime AB: 0 < Mr < Mp, M0 = Mp, /Cj. = 0, /C0 a 0; (A.3b) 

Reg ime B: Mj. = 0 , M 0 = Mp, K^ a -/c^. > 0. (A.3c) 

During the p l a s t i c d e f o r m a t i o n of the p l a t e s u b j e c t e d to un i fo rm 
p r e s s u r e 

M0 = Mp, 0 £ r £ R. (^_4j 

The s imply suppor ted ou te r edge of the p l a t e i s in R e g i m e B; i . e . , 

V = W = Mr = 0 a t r = R. ( ^ 5 ) 

F o r load h i s t o r i e s such that no hinge band a p p e a r s , the c e n t e r of the pla te 
IS in Reg ime A, so that 

Mj. = Mp at r = 0, (^_^j 

while the r e m a i n d e r of the p l a t e i s in R e g i m e AB, which m e a n s , us ing 
E q s . A.2 and A.3b, 



Ŝ v av 
0 < M_ < Mp, - ^ = 0, -2J1 £ 0 

" r o r 
for 0 < r < R. (A.7) 

If a h inge band of r a d i u s p(t) g r o w s out f rom the c e n t e r of the p l a t e , the 
ent ire band i s in R e g i m e A so that 

av sv 
M^ = Mo. ^ £ 0, ^ £ 0 for 0 £ r £ p , 

r Sr^ o r 
(A.8) 

while the r e m a i n d e r of the p la te is s t i l l in R e g i m e AB; 

b'V bv 0 < M^ < M„, ^ = 0 , ^ £ 0 for p < r < R. 
r "' O r ' o r 

(A. 9) 

F i g u r e 15 shows the m o m e n t and p l a s t i c - r e g i m e d i s t r i b u t i o n in the p l a t e . 

The in i t i a l condi t ion of the 
m o t i o n is that the p la te i s a t r e s t 
unt i l t i m e t when the y ie ld load is 
f i r s t r e a c h e d . Consequen t ly , 

V( r , t v ) = W(r , t „ ) = 0. (A.IO) 

Equa t ion of m o t i o n A. l m u s t 
be so lved sub jec t to in i t i a l cond i t ions 
A.IO and b o u n d a r y condi t ions and 
r e s t r i c t i o n s A . 4 - A . 7 if t h e r e i s no 
hinge band. If a hinge band a p p e a r s , 
E q s . 'A.6 and A.7 a r e r e p l a c e d by 
E q s . A.8 and A .9 . 

Fig. 15. Moment and Plastic-regime Distribution 
in Plate. ANL Neg. No. 113-3223. 

The r e s t r i c t i o n s on the cont inu i ty of Mj., M0, W, and t h e i r d e r i v a 
t i v e s a r e d i s c u s s e d in de t a i l in Ref. 4 . The a r g u m e n t s wi l l not be r e p e a t e d 
h e r e ; the c o n c l u s i o n s p e r t i n e n t to th i s p r o b l e m a r e : W, V, Mj., and S w / 
^ r a r e con t inuous in r and t, but a c r o s s a moving hinge c i r c l e p(t) , the 
d i s con t inu i ty cond i t i ons 

( A . l l a ) 

(A. l i b ) 
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a n d 

m u s t be sa t i s f ied . In E q s . A. 11, (f} denotes the d i s con t inu i ty in f a c r o s s p . 

3. Solution for No Hinge Band (Pmax * "'̂ b) 

Guided by the s ta t i c l imi t a n a l y s i s , take the in i t i a l v e l o c i t y d i s t r i 
bution as 

V(r , t ) = V p ( t ) ^ , (A. 12) 

whe re Vp is the ve loc i ty a t the p la te c e n t e r . The condi t ion in E q s . A .5 that 
V van i shes at r = R and the condi t ions on S ^ v / ^ r ^ and d v / S r in E q s A 7 
a r e sa t is f ied by Eq. A.12. The subs t i tu t ion f r o m E q s . A .4 , A .2a , and A 12 
into E q s . A . l , followed by in t eg ra t i on with r e s p e c t to r , t hen g i v e s 

r ( M , - M p ) = - | r 3 p . ^ ( , R . r ) ^ . C, ( t ) . ( A . 13) 

Boundary condit ions A.5 and A.6 on Mj. r e s u l t in 

C,(t) = 0, 

dV 2 
^ = - [ P ( t ) - P y J , 

and 

^ ^ = ^ ' [P( t ) r^ + Py(R^ + R r - r ^ ) ] , 

(A. 14a) 

(A.14b) 

(A.14c) 

where the s ta t i c y ie ld load P is^ 

6 M 
P = 0 

^ R ' • ' (A.15) 

y 



2 r' 
Wo(t) = - ( t - T ) [ P ( T ) - P ] dT, (A.l6b) 

and 

W(r,t) = W p ( t ) ^ ^ , (A.16c) 

where Wp(t) is the displacement at the plate center. 

Because M .̂ = Mp and dM^/Sr = 0 at r = 0 (see Eq. A.l), the con
dition that M^ £ Mp throughout the region 0 < r < R will be satisfied if 
r = 0 is a local maximum of M • i.e., 

S ' M , 
< 0 at r = 0, (A. 17) 

which by Eq. A. 14c is equivalent to 

P(t) < 2Py. (A. 18) 

Define 

Pb = 2Py (A.19) 

as the load at which a hinge band is initiated. The condition that P(t) does 
not produce a hinge band is then 

Pmax < Pb- (A.20) 

The plastic deformation ends at time tr when V(r,t) vanishes. By 
Eqs. A.12 and A. 1 6a, tf is found from the solution of 

J P(t) dt = Py( t f - ty) . (A. 21) 

V 
Equation A.21 has the interpretation that the average p ressu re over the 
interval of deformation is the yield load. 

Define the impulse I per unit area, the mean time tmean °^ the 
pulse, and the effective p ressu re Pg by 
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-tf (A. 22a) 
= I P(t) dt. 

\ 

4/" 
and 

P 

(A.22b) 
( t - t y ) P ( t ) d t , 

(A.22c 
e 2t„ 

From Eqs. A.l6b, A.21, and A.22, the final plastic deformation at r = 0 is 

found to be 

w . < . , ) = ^ , ( • - ; ^ ) - < - " ' 

and W(r,tf) is easily determined from Eqs. A. 1 6c and A.23. 

4. Solution for Deformation with Hinge Band (Pmax -̂  ^b) 

a. Interval ty £ t £ tb 

The solution given by Eqs. A. 14c and A. 16 is applicable up to 
the time tĵ  when the pressure first reaches the value P^ and S^M^/Sr^ = 
0 at r = 0. At tb, a hinge circle p(t) separating the region of the plate in 
Regime A from the region in Regime AB begins to move out from the 
origin. 

b. Interval t^ £ t < t ^ ^ ^ 

The substitution from Eqs. A.4 and A.8 for M0 and Mj. into 
partial differential equation A.l resul ts in the integral vanishing for arbi
trary r in the region 0 £ r £ p(t). This implies that the integrand must 
be identically zero, or, 

M I Y = P(t). (A. 24) 

The solution of Eq. A.24 is 

/iV(r,t) = r P ( T ) dr + n( r ) ; 0 £ r £ p(t), (A.25) 



where n(r) is an a rb i t ra ry function determined from the continuity of the 
velocity at the edge of the region. Letting Vp(t) be the instantaneous lateral 
velocity at the hinge circle , i.e.. 

Vp(t) = V(p(t),t), 

f! is found fronn 

n(p) = MVp - I P(T) dT, 

(A.26) 

(A.27) 

where t is viewed as a function of p rather than the converse. 

Since the integrand in Eq. A.l is identically zero for 0 < r < p(t), 
the governing part ial differential equation for the region p(t) < r < R is, 
using Eqs. A.4, A.15, and A.2a, 

-t, ('"rl • i F̂ R' , • P ( . , * . f r dr. (A.28) 

Using relations A.9 and A.5, the expression for V(r,t), analogous toEq. A.12 
which applies up to t, , will be taken as 

R - r V(r,t) = Vp(t) ^ _ ^^y p s r £ R, tb £ t s tg (A.29) 

where tg is the time when the hinge band shrinks to the origin. Integration 
of Eq. A.28 with respect to r then gives 

r M , R ' P + (3p' - r ' ) P + (Rr ' - 3Rp' " y r ' + 2p') p. 

+ C^{^.). 

dt VR-p/ 

(A.30) 

The boundary condition on Mj. given in Eq. A.5 and the continuity of 
MJ. at r = P are used to obtain 

C2(t) 
^K_ 

6 ( R - p ) ( R + 3p) 

(3p - 4R) R V y 

dt \R - pi M ( R - p ) ( R + 3p) ( R - p ) ^ 

+ ( 2 R + p ) P 

+ (R + 2p) P 

(A.31a) 

(A.31b) 
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a n d 

M , 6 r ( R - p ) ( R + 3p) 
(R^r + R^r^ - Rr^ - 4Rp^ + 3p^) j ^ ^ . 

+ ( R r + 2 R p + 2 r p + p ^ ) ( r - p ) ^ P 

P ^ £ R, 
(A.31c) 

The condition that M^ should not e x c e e d Mp in the r e g i o n p 

r £ R impl i e s 

b^M, 
£ 0 at r (A.32) 

Using Eq. A.31c, this is equiva lent to 

( R + p ) ( R - p ) ' P £ 2PyR' , tb (A.33) 

When the hinge band is in i t ia ted , the r a d i u s of the h inge c i r c l e is z e r o and 
the p r e s s u r e has the value 2P by Eq. A.19 . C o n s e q u e n t l y , the equa l i ty in 
e x p r e s s i o n A.33 holds at t = t^. We wil l h y p o t h e s i z e tha t the equa l i t y con
t inues to hold in the e n t i r e i n t e r v a l t^ £ t £ t ^ a x ' ^ ° tha t p ( t ) i s d e t e r m i n e d 
by the solut ion of the cubic equat ion 

[R + p( t ) ] [R-p( t ) ]^ 
2PyR^ 

^̂  t ^ t < t 
P( t ) ' b " "̂  ~ "^max-

(A.34) 

The b a s i s of th is h y p o t h e s i s i s a s fo l lows: The d i f f e r en t i a t i on of 
Eq. A.34 y ie lds 

dp _ ^PyR d P 
dt " (R-p)(R. + 3p) p2 dt • 

(A.35) 

Since dp /d t and d P / d t have the s a m e s ign and v a n i s h a t the s a m e t i m e . 
p(t) a t t a ins i ts m a x i m u m when P E q u a t i o n s A.34 and A.35 innply 
that the hinge c i r c l e is "pushed" out f r o m the o r i g i n to i t s e x t r e m e pos i t ion 
as the p r e s s u r e i n c r e a s e s f rom P ^ to P m a x - A va lue of p l e s s than tha t 
which sa t i s f i es Eq . A.34 would c a u s e r e l a t i o n A.33 to be v i o l a t e d . It can 
be shown that a so lu t ion for the p l a t e d e f o r m a t i o n ob ta ined by us ing Eq . A.34 
sa t i s f ies the d i f fe ren t ia l e q u a t i o n s , the b o u n d a r y cond i t i ons , and d i s c o n 
tinuity condi t ions A. 11, and is t h e r e f o r e the c o r r e c t so lu t ion . 



C o m b i n i n g E q . A . 3 4 w i t h E q . A . 3 1 c g i v e s , u s i n g E q . A . 1 5 , 

^ R ( r + p ) ( r - p ) 3 

Mp r ( R + p ) ( R - p ) 3 ' 

w h i l e E q . A . 3 1 b r e d u c e s t o 

_d l ^ \ P 

p £ r £ R , t, £ t £ t^ 

d t \ R - pJ M ( R - P ) • 

W e i n t e g r a t e E q . A . 37 t o o b t a i n 

Vp(t) = [R-p( t ) ] 
P ( T ) ^ V p ( t b ) 

—^—'— dT+ — 

' t b 
R - P ( T ) R - p ( t b ) 

S i n c e V p ( t b ) = V p ( t b ) a n d p ( t b ) = 0, w e h a v e f r o m E q . A . l 6 a t h a t 

^p(^b) = 7 / N P ( ^ ) - Py] dT. 

( A . 3 6 ) 

( A . 3 7 ) 

( A . 3 8 ) 

( A . 3 9 ) 

S u b s t i t u t i n g f r o m E q s . A . 3 8 a n d A . 3 9 i n t o E q . A . 2 9 g i v e s 

V ( r . t ) 
R - r 

MR 
R 

tb • t y 

( A . 4 0 ) 

T h e p l a t e d i s p l a c e m e n t i s t h e n f o u n d b y i n t e g r a t i n g t h e v e l o c i t y a n d a p p l y i n g 

t h e c o n t i n u i t y c o n d i t i o n s a t ti^. u s i n g E q s . A . 1 6 b , c . T h e r e s u l t i s 

W ( r , t ) 
R - r 

piR 

p £ r £ R , 

( t - T ) P ( T ) 

R - P ( T ) 
dT + 2 P ( T ) - P y ] d T 

t < t < t 
"•b ~ "-max-

( A . 4 1 ) 

W e r e t u r n n o w to t h e r e g i o n 0 £ r £ p i n o r d e r t o d e t e r m i n e f^(r) 

f r o m t h e c o n t i n u i t y of t h e v e l o c i t y a t t h e h i n g e c i r c l e . T h e s o l u t i o n p ( t ) 

t o E q . A . 3 4 c a n b e i n v e r t e d t o g i v e 
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t = ^(p) , 0 £ p £ p ^ ^ ^ , tb £ t £ tj. 

with 

P(p) = P"' 
2PyR^ 

aR+p)(R-p)V' ^ 

By E q s . A.27, A.38, A.39, and A.42, we have 

Pb £ P( t ) £ Pj, 

fi(p) = ( R - p ) 

-P(P) 

/3(P) p /_ ) ^ tb 

^ , — { [P(r)-Py]dT 
tb ty 

r 
th 

P ( T ) dT, 0 £ p < p^ 

(A.42) 

(A.43) 

(A.44) 

Subst i tut ing th is r e s u l t into Eq. A.25 then g ives 

/.iV(r,t) = / P(T)dT + ( R - r ) ~-r-^ 

^(r) 4 ^-^W 
d T 

2 ( R - r ) " tb 
[ P ( T ) - P J dT, 

0 S r £ p , t, £ t £ t^. (A.45) 

The d i s p l a c e m e n t is found by i n t e g r a t i n g V( r , t ) wi th r e s p e c t to t i m e and 
applying continuity condi t ions a t t = tbJ the r e s u l t i s 

MW(r,t) f f t - T ) P ( T ) d T W R , . ) f^^"^ ( t -T )P (T) 
^Mr) 'J. R-P(T) '^^ 

^ 2 ( R - r ) ^ ' b 
R — J ( t - r ) [ P ( T ) - P y ] d T , 

0 £ r ^ P , t b £ t £ t g . (A.46) 
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The uppe r l i m i t of the i n t e r v a l of a p p l i c a b i l i t y of t h e s e l a s t two equa t i ons 
is t , r a t h e r than t , a s wi l l be exp la ined in the next s ec t i on . 

In s u m m a r y , for the i n t e r v a l tb £ t £ t m a x ' the h i n g e - c i r c l e 
r a d i u s i s found f r o m Eq . A.34, and the p la te ve loc i ty and d i s p l a c e m e n t a r e 
given by E q s . A.45 and A.46, r e s p e c t i v e l y , in the i n t e r i o r of the h inge band 
and by E q s . A.40 and A.41 in the e x t e r i o r r eg ion . P e r f o r m i n g the r e q u i r e d 
d i f f e ren t i a t ion on e i t h e r s ide of the hinge c i r c l e , we can show that d i s c o n 
t inui ty cond i t i ons A.11 a r e s a t i s f i ed ; in fact , a l l the d e r i v a t i v e s a p p e a r i n g 
in E q s . A. 11 a r e con t inuous at the hinge c i r c l e . P r o p e r l y speak ing , p(t) 
should be r e f e r r e d to a s a p l a s t i c r e g i m e b o u n d a r y in the i n t e r v a l 
tb £ t £ tj^g^jj, s i n c e the t e r m "hinge c i r c l e " i m p l i e s a d i scon t inu i ty in 
bv/br a t p . H o w e v e r , such a d i s con t inu i ty o c c u r s for t m a x £ t £ tg so 

tha t p i s bo th a h inge c i r c l e and a r e g i m e b o u n d a r y in the l a t t e r i n t e r v a l . 
Consequen t ly , t h e r e s e e m s l i t t l e point in mak ing the d i s t i nc t i on in 
t e r m i n o l o g y . 

Since P(0) = tb, we have f r o m E q s . A.45 and A.46 that the v e l o c 
i ty and d i s p l a c e m e n t at the c e n t e r of the p l a t e a r e given by 

r' ftb 
j^Vp(t) = I P ( T ) d T + 2 I [ P ( T ) - P y ] d T , 

^tb ^ty 

MWo(t) = f ( t - T ) P ( T ) dT + 2 f ( t - T ) [ P ( T ) - P y ] dT, 

•^tb \ 

t^^£ t £ t 

c. I n t e r v a l t m a x 

(A.47) 

E q u a t i o n s A .24 -A .33 r e m a i n app l i cab l e for th is t i m e i n t e r v a l . 
H o w e v e r , m a k i n g the a s s u m p t i o n tha t p(t) is s t i l l given by Eq. A.34 would 
p r o d u c e r e s u l t s which would v io la te d i scon t inu i ty cond i t ions A. 11 . Since 
p(t) now s t a r t s to m o v e back t o w a r d the o r ig in , the function Q{r) is known 
for e v e r y p o s i t i o n r £ p that o c c u r s du r ing th is t i m e i n t e r v a l . Consequen t ly , 
E q s . A.45 and A.46 a r e s t i l l va l id for the ve loc i ty and d i s p l a c e m e n t ins ide 
the h inge band , a s a r e E q s . A.47 for the c e n t r a l ve loc i t y and d i s p l a c e m e n t . 
We m u s t s t i l l d e t e r m i n e p( t) and the ve loc i t y and d i s p l a c e m e n t ou t s ide the 
hinge band . 
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Let t ing r = p in Eq. A.45, we can w r i t e 

t /"/3(P) PCT) 

MVO . ^ r P(T)dT. r ^ ^ -
R - p ^-P JB{P) \ 

+ 1 r ^ [ p ( T ) - p j d T , t j „ ^ ^ £ t £ tg 

Differentiat ing Eq. A.48 with r e s p e c t to t ime g ives 

(A.48) 

V„ ^± (Z£-\ = i £ ^ L _ - f p(T)dT 
' ' d t i R - p y dt ( R . p ) 2 j p ( p ) 

1 p(t)-p(MP))g!f, 
( R - p ) 

P(P(P)) dg dp 
R-p( |S (p ) ) dp dt • 

(A.49) 

F r o m E q s . A.42 and A.43, we have 

2 P y R ' 

P(/3(P)) = ( R + p ) ( R - p ) ^ -

so that Eq. A.49 b e c o m e s 

P{li)p)) = P. 

d ( Vp 

. -P) ' J^( dt \ R - p / dt ( R . p ) 2 j ^ ^ ^ j R - p 

(A.50) 

(A.51) 

E l imina t ing (d /d t ) [Vp/ (R - p)] be tween E q s . A.31b and A.51 then g ives a 
different ial equat ion for p ; th i s equa t ion i s , a f t e r s o m e a l g e b r a i c 
manipula t ion . 

^ ( R - p ) ( R + 3p) r P ( T ) d T - P ( t ) ( R + p ) ( R - p ) ^ + 2 P R 3 = 0. (A.52) 



O b s e r v i n g tha t 

d 
dp 

[ ( R + p ) ( R - p ) ' ] = - ( R - p ) { R + 3p), (A.53) 

we a r e led to the iden t i ty 

_d_ 
dt 

{ R + p ) ( R - p ) ' I P ( T ) dT 

^|3(P) 

dp 
dt 

; R - P ) ( R + 3 P ) P ( T ) dT 

^ p ( p ) 

+ P( t ) (R + p ) ( R - p ) ^ - 2PyR3 g | £ , (A.54) 

w h e r e E q . A.50 h a s b e e n u s e d . Di f fe ren t ia l equa t ion A.52 can then be r e 
w r i t t e n , us ing E q . A.54 , a s 

d 
dt 

(R + p ) ( R - p ) ' r P ( T ) dT 

^i3(p) 
+ 2 P R^ 

y 
1 -

dP dp 
dp dt 

(A.55) 

The i n t e g r a t i o n of Eq . A.55 g ives 

- (R + p ) ( R - p ) ' / P ( T ) dT + 2 P R M t - P(p)] -t- C3 = 0, (A.56) 
•^/3(p) 

Eq . A .42 , P(Pmax) = tmax^ c o n s e q u e n t l y , 

C3 = 0. 

The equa t ion tha t d e t e r m i n e s p(t) i s t h e r e f o r e 

(A.57) 

5(p) 

P ( T ) dT = 
2PyR'[t-p(p)] 
( R + p ) ( R - p ) ^ • ' ™ ^ ' ' " ' - ''=• 

(A.58) 

The h inge c i r c l e mo t ion c e a s e s at tg when p = 0. Since, by 
Eq. 42, /3(0) = tb , the t i m e tg is found f r o m Eq. A.58 to be d e t e r m i n e d by 
so lv ing 

P ( t ) d t = 2 P ( t g - t b ) . (A.59) 
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or , using Eq. A.19, 

f "" P(t) dt = Pb(tc - tb)-
(A.60) 

The l a s t equation has the i n t e r p r e t a t i o n that the a v e r a g e p r e s s u r e o v e r 

the i n t e rva l when the hinge band e x i s t s is the p r e s s u r e a t which the b a n d 

is in i t ia ted . 

The veloci ty d i s t r ibu t ion outs ide the h i n g e - b a n d r e g i o n wi l l be 

found next. F r o m Eqs . A.29 and A.48, we have 

, 2(R-r) p 

d T 

[ P ( T ) - P y ] dT, 

p(t) £ r £ R, t^ t £ t , . (A.61) 

This e x p r e s s i o n is inconvenient to use in d e t e r m i n i n g the d i s p l a c e m e n t in 
the region . Al t e rna t ive ly , we can w r i t e 

SV(r,T) 
bi v'"-') = j ^^-ir^ dT + v(r,tj„^j. (A.62) 

which, using Eq. A.29, b e c o m e s 

V(r , t ) = (I »->f 4T R - p 
dT + V ( r , t - „ _ ) . (A.63) 

The in tegrand is given in Eq . A.31b, whi le V ( r , t m a x ) i^ found f r o m 
Eq. A.40. An a l t e r n a t e equat ion for the v e l o c i t y i s t h e r e f o r e 

MV(r,t) = ( R - r ) I H ( T ) d T . | | p , [ P ( T ) - P j d T 

I + I ""^'^ - ^ 1 4 - dT 
R - P ( T ) 

p(t) < r £ R, t ^ ^ ^ =s t £ tg, 

(A. 64) 
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w h e r e 

H(t) 
{ R - p ) ( R + 3p) 

(R + 2p) P -
( R - p ) ' 

(A.65) 

The d i s p l a c e m e n t in the r e g i o n p(t) £ r £ P m a x '^^'^ ^^ w r i t t e n 

(A. 66) W(r , t ) = / V(r ,T) dT + j V(r ,T) dT + W(r , t ^^ j^ ) , 

w h e r e t = tj. when p(t) = r . By Eq . A .58 , t_ is found f rom 

L P ( T ) dT = 

P(r) 

2PyRntr-P(r)] 
(R + r ) ( R - r ) 2 

(A.67) 

In the f i r s t i n t e g r a l of Eq . A.66 , r < p , so that V i s g iven by Eq. A .45 ; 
while in the s e c o n d i n t e g r a l , r > p, so tha t V is g iven by Eq. A.64. Making 
the s u b s t i t u t i o n s for V, p e r f o r m i n g i n t e g r a t i o n s by p a r t s , eva lua t ing 
Eq. A.46 a t t j ^ax ' ^ " d us ing E q s . A.65 , A.31b, and A.48 lead to 

MW(r,t) = ( R - r ) - ^ ( t - T ) H ( T ) d T + 
'P(^> ( t - T ) P ( T ) 

R - P ( T ) 
d T 

- 't , . 
( t - T ) [ P ( T ) - P y ] dT 

J •^P(r) 
( t - T ) P ( T ) dT, 

p(t) (A. 68) 

The d i s p l a c e m e n t in the r e g i o n Pmax £ r £ R can be w r i t t e n 

W(r , t ) r V(r,T) dT + W(r , t r (A. 69) 

In the i n t e g r a l , r > p , so tha t V is g iven by Eq. A.64. Making th i s s u b 
s t i t u t ion , e v a l u a t i n g W at t m a x f r o m Eq . A . 4 1 , and p e r f o r m i n g s o m e in 
t e g r a t i o n s by p a r t s , we a r r i v e a t 
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/.iW(r,t) = ( R - r ) ( t - T ) H ( T ) dT + 
" tmax ( t - T ) P ( T ) 

R-p(r) 
' t b 

dT 

r ' ' ' ( t-T)[P(T)-Py] dTl 

£ r £ R, t £ t £ t 
m a x c 

(A.70) 

Discontinui ty condi t ions A. 11 a r e s a t i s f i ed in the i n t e r v a l 
tmax £ t £ tg for V(r, t) given by E q s . A.45 and A.64, W(r , t ) g iven by 
E q s . A.46 and A.68, and p(t) given by Eq. A.58 . Unlike the p r e v i o u s i n 
t e rva l , a discont inui ty in QV/S r o c c u r s a t p , so p is p r o p e r l y c a l l e d a 
hinge c i r c l e . F r o m E q s . A.31c and A.52, we have tha t 

S 'M, dp 

r=p' ' 
R - p dt 

P dT. 
'P(P) 

(A.71) 

Since p d e c r e a s e s in this t ime i n t e r v a l and the i n t e g r a l is n o n n e g a t i v e , 
inequali ty A.3 2 holds and the yie ld condi t ion is not v i o l a t e d in the r e g i o n 
p £ r £ R. 

The ve loc i ty and d i s p l a c e m e n t d i s t r i b u t i o n s a t tg a r e , u s i n g 
Eqs . A.61, A.68, A.70, and A.60, 

/uV(r,tg) = 
2 ( R - r ) 

R [ P ( T ) - P y ] dT, R , 

fxW(r,tg) = ( R - r ) {t (tg-T) H(T) dT + r 
^ ( r ) 

: t c - r ) p ( T ) , . , 
R - P ( T ) 

2 
+ — 

R ( t g - T ) [ P ( T ) - P y ] dT 

y 

ft 
+ j ( t g - T ) P ( T ) dT, 0 

•^P(r) 
(A.72) 

(Contd. ) 



, , ,-tmax (t^ - T) P(T) 
MW(r,tg) = (R-r )^ j (tg-T)H(T)dT + j R.p^r) ^ ^ 

rnax tb 

^ I / ' " ('c - rmr) - Py] dTJ, p^^^ £ r £ R. (^-'^^^j 
ty J 

In particular, at r = 0, where tj. = tg and /3(r) = tb, we have 

MVo(tg) = 2 / [P(T)-Py]dT, (A.73a) 

and 

MWo(tg) = r " (tg-T) P{T) dT + 2 r ^ (tg-T)[P(T)-P ] dT. (A.73b) 

^tb -̂ ty 

d. Interval tg £ t £ t£ 

Since the hinge band has disappeared, Eqs. A.12, A. 14b, and 
A. 14c apply in this interval as they did in the initial interval ty £ t £ t,. 
After performing straightforward integrations with respect to time, we 
have, using Eq. A.73a, 

MV(r,t) = ^ % ^ ^ / [P(T)-Py]dT, (A.74a) (R-r) r 

y 

MW(r,t) = i i ^ ^ J r (t-T)[P(T)-Py]dT 

I V 

- r '̂  (tg - T)[P(T) - Py] dT [ + MW(r,t^), 

y -' 

0 £ r £ R, t^ £ t £ t̂ . (A.74b) 
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In p a r t i c u l a r . 

MVo{t) = 2 / [ P ( T ) - Py] dT, 
(A. 7 5a) 

^Wp(t) = 2 / (t - T ) [ P ( T ) - Py] dT - 2 / (tg - T)[P(T) - Py] dT 

+ / (tg - T) P ( T ) dT, tg £ t £ tf. (A. 7 5b) 

The t ime tr is when the p la te d e f o r m a t i o n c e a s e s ; f r o m 
Eq. A.74a, this is d e t e r m i n e d f r o m 

P(t) dt = P^(tf - t^) . (A. 76) 

which is ident ica l to Eq . A . 2 I . This equa t ion h a s the i n t e r p r e t a t i o n tha t 
the a v e r a g e p r e s s u r e dur ing the d e f o r m a t i o n is the y i e ld p r e s s u r e . 

Evalua t ing Wp(tf) f r o m Eq. A.75b, u s ing E q s . A.60 and A.76 , we 
have, after some a l g e b r a i c r e a r r a n g e m e n t . 

MWp{tf) = — P(t) dt 1 
4 P 

r t f 
Zj ( t - ty)P(t )dt 

P(t ) dt 

( t - t b ) P( t ) dt . (A.77) 

Define I*, t j^g^„, and P * by 

I* = / P(t) dt, 
~'tu 

-J* / ( t - t b ) P( t ) dt, (A.78) 
(Contd . ) 
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and 

K r 
2t* '-'•mean 

Then, f r o m E q s . A .77 , A .78 , and A.22 , we have 

r 
Wo(tf) 

MP.. y L 

5. R e c t a n g u l a r P u l s e 

Pp 2 V I / V2 P* / 

(Contd.) 
(A.78) 

(A.79) 

The so lu t ion of Hopkins and P r a g e r for a r e c t a n g u l a r pu l s e 
can be d e r i v e d a s a s p e c i a l c a s e of the g e n e r a l so lu t ion ob ta ined h e r e . 
Let P( t ) be g iven by 

P( t ) P m a x . 0 £ t £ t p , | 

0, t > tp. J 
(A.80) 

Then, 

= tb 

= I* 

= P ! 

m a x 

'^^max '•0' 

p ^ m a x " 

P(p) = 0. 

and 

2 P 

to- ^ m a x > -^y 

to. P m a x > 2Py-

(A.81) 

a. Load Range P < P j ^ ^ x < ^ ^ y 

The r a d i a l bend ing m o m e n t as given by Eq. A.14c b e c o m e s 

^ ._ f f . ^ ) f £ m a x 4 , f , ^ . l i ) , o . t £ t p , 
Mp \ R / \ Py R ' R R V 

tp < t < tf. 
Mr 

M^ 
= 1 

y A. 82) 
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T h e 
veloci ty and d i sp l acemen t a r e found f rom E q s . A.12 and A. 1 6 to be 

V ( r . t ) = ^ ( ^ m a x - P y ) ' - ° =̂  ' " ' ° ' 

^ ( r . t ) = ^ i | ^ ( P m a x t o - P y t ) . tp < t £ tf. 

, , R - r , „ P ) t^ 0 £ t £ to, 
W(r,t) = - ^ (Pmax - ^y' ^ • 

(A.83) 

and 

W(r,t) = ^ [Pmaxto(2t - tp) - P y t ' ] , tp < t £ t,, 

and the final d i sp l acemen t at the p la te c e n t e r i s found f r o m Eq . A.23 to be 

T-,2 ,.2 / D \ 

(A.84) Wo(tf) m a x 0 

MPV 

b. Load Range P m a x ~ ^ ^ y 

At t = 0, a hinge band f o r m s i n s t a n t a n e o u s l y in the r e g i o n 

0 £ r £ Pmax- By Eq. A.34, P ^ ^ x ^^ f ° " " d f r o m 

( R + P m a x ) ( R - P m a x ) 
2 _ 2PyR (A.85) 

F o r 0 £ t £ tg, p(t) i s d e t e r m i n e d f r o m Eq . A.58 to b e given by 

P(t) = Pr 0 £ t £ tp. 

and 

( R + p ) ( R - p ) ' = 
2P„R t 

to £ t £ t,. 

(A.86) 

F r o m E q s . A.31c and A.86, we have for the r a d i a l bend ing m o m e n t in the 
region p £ r £ R 

^ _ J R ( r + P m a x ) ( r - P m a x ) ' 
Mp - " r(R + p^^^)(R-p^^J^' 0 £ t £ to (A.87) 

(Contd. ) 
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and 

Mr (R - r)(R^r + R^r' - Rr^ - 4Rp^ + 3p") 
Mp - r(R + 3p)(R-p)3 ' '» < t £ tg. 

(Contd.) 
(A.87) 

For 0 £ r — p, the velocity and displacement are given by Eq. A.45 and 
A.46 to be 

V(r,t) = ^ ^ ^ , 0 £ t £ t p , 

V(r,t) . % ^ , t „ £ t £ t g . 
fX c 

P t̂  
W(r,t) = "l^"^ . 0 < t s tp. 

and 

W(r,t) 

Zfi 

Pmaxto(2t - tp) 

(A.88) 

ZiJ • -" -— - -C 

while outside the hinge band (p £ r £ R), from Eqs. A.61, A.68, and A.70, 

V(r,t) 
R - P r 

R - r max 

0 £ t £ tp. 

V(r,t) = ^ r ^ ^ ^ " T ^ . to £ t £ tg. 

W(r,t) 

R - P(t) M 

P t ' R - r ^max 
R - Pmax 2,i 

0 £ t £ tp. 

W(r,t) = ^ r ( R - r ) [ ( R + p ) ( R - 3 p ) . ( R . r ) - ] _ 1 
2^ I (R + Pmax)(R-Pmax) J 

P * r £ p „ ^ ^ , to £ t £ tg. 

and 

W(r,t) 
P tS(R - r) max ; 

2M 

2p (R + p ) + (R + p)(R- 3p) 
max max 

(R + Pmax)(R-Pmax) 

£ T £ 

- (A.89) 
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In p a r t i c u l a r , 

V(r.tc) = 7 ^ ^maxt". 

W(r,tg) 

and 

2^ 

^max / , 7_ £ l \ 
1 ^ K' R'' RV 

0 £ r £ p^ 

W(r,tg) = 3^ ( R - r ) 
(R + Pmax) '+Pmax 

(R + Pmax)(R-Pmax)^ 
r £ R 

(A.90) 

and 

F o r tg £ t £ tf, E q s . A. 14c and A.74 give 

M , R . . / r r^ V 
r 

Mo 
R - r 

R 

V(^ ' ' ) = ^ ^ ( P m a x t o - P y t ) . 

W(r,t) R - r 
jUR 

[2Pmaxto - Py( t + tg)](t - tg) + W( r , t g ) . 

(A.91) 

In p a r t i c u l a r . 

W(r,tf) 
P to 

m a x " 
2M 

, 2 ,.2 

L^^y 

W(r,tf) = ^ ^ 
max*^" / _r_\ 

2MP, V " R) 

R 

Pr 

2 3 \ 
r - r \ 
R^ R V 

0 £ r £ P„ 

m a x m a x 
1 + —;:— -̂  

r £ R, 

• (A.92) 

and 

W(0,tf) 

2 2 

Pmaxto / 3 
2uP \ 2 p ; 

^ y ^ m a x ' 
The equat ions of th is s ec t i on a r e the s a m e a s t hose ob t a ined by 

Hopkins and P r a g e r except for the e x p r e s s i o n s for W(r , t ) for tp < t < tf 
which a r e not given in Ref. 4. 
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6. Pulse That Attains Its Maximum Instantaneously 

Perzyna^ t reats loads character ized by 

P ( T ) dT a tP(t), (A.93) 

i.e., the p re s su re attains its maximunn instantaneously and decays there
after. He refers to these loads as "blast" loads and calls the general 
loading of Fig. la an "innpact" load. His resul ts can be obtained from the 
"impact"-load solution derived here by taking 

ty = tb = t ^ ^ ^ = /3(p) = 0. (A.94) 

which eliminates many of the integrals in the expressions for the velocity 
and displacement. Perzyna solved differential equation A.52 numerically 
for the hinge motion for two part icular load shapes and did not obtain the 
general closed-form solution Eq. A.58. 
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APPENDIX B 

Solution for Re in forced C i r c u l a r C y l i n d r i c a l Shel l 
for Gene ra l P u l s e Shape 

1. Introduct ion 

The dynamic p las t i c de fo rma t ion of a r i g id ly r e i n f o r c e d , * c i r c u l a r 
cy l indr ica l shell subjected to a un i fo rm p r e s s u r e is t r e a t e d by Hodge . 
He obtains c l o s e d - f o r m solut ions for p r e s s u r e p u l s e s tha t r i s e i n s t a n 
taneously to the i r m a x i m u m and then decay m o n o t o n i c a l l y and a l s o for 
m o r e genera l pulse shapes if no h inge -band f o r m a t i o n o c c u r s . H i s a n a l y 
s is will be extended in this appendix to include the c a s e of the g e n e r a l 
pulse shape of F ig . 14 whe re a hinge band is p r o d u c e d . The m e t h o d of 
solution is the s ame as that u s e d in the a n a l y s i s for the c i r c u l a r p l a t e in 
Appendix A. 

2. S ta tement of P r o b l e m 

Cons ider the r e in fo rced c i r c u l a r c y l i n d r i c a l she l l of F i g . 2b hav ing 
radius A, th ickness H, d i s t ance 2L be tween r e i n f o r c e m e n t s , and s u r f a c e 
densi ty fj.. The usua l s h e l l - t h e o r y a s s u m p t i o n s a r e m a d e so that s t r e s s 
d is t r ibut ions a c r o s s the shel l t h i c k n e s s a r e r e p l a c e d by t h e i r r e s u l t a n t 
d i rec t s t r e s s e s , bending m o m e n t s , and s h e a r s . A s s u m e tha t the she l l 
m a t e r i a l i s r igid, pe r f ec t ly p l a s t i c , with y ie ld s t r e s s Oy. The p r o b l e m 
can be fo rmula ted in t e r m s of only two r e s u l t a n t s : the c i r c u m f e r e n t i a l 
s t r e s s r e su l t an t N0 and the axia l bending m o m e n t r e s u l t a n t M r . The 
equation of mot ion is 

Tnd W r z M ' ^t"' ""fi":- \ " " • " ' • ''^'^ '' "^^ "PP^^'^^ -^'^'--' p r e s s u r e , 
t ^ i c ! half b l n " - = r " " " ' ' " ' ' — i d ^ e d p o s i t i v e i n w a r d Only the 
typical ha l f -bay 0 £ z £ L need be c o n s i d e r e d . 

of FiH 3 ' b ' ' i ' ' e ' " " " f ° r " ' " ^ ' " ' ° ^^ "^^ '''"'''"' - ' " a c t i o n condi t ion ot i i g . 3b, I.e. , a r ec t ang le with v e r t i c e s (IMp, iNp), w h e r e 

Mp = i ayH^ Np = ayH. ( 3 .^ 

- " s ' w Ind ' r ^ H ' ' ' V ' ' " ° w v e c t o r , with c o m p o n e n t s p r o p o r t i o n a l to 
o u t y a r d p e r p e ' n d - " ^ " ' . \ " ' " ' r a d i a l ve loc i t y , i s in the d i r e c t i o n of the 

ward pe rpend icu la r to the yie ld locus a t the y ie ld s t a t e ( M „ N0). 

*Nonrigid reinforcements are treated by Nemirovsky and Mazalov." 
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The three plastic reginnes occurring in this problem are: 

b'Y 
Regime A: M^ = -Mo, N0 

Regime AB: -Mp < M^ < Mp, N 

No, ^ a 0, V a 0; 

-No, -2-j = 0 , V a 0; 
dz 

Regime B: M ,̂ = Mp, N * 
-Np, . 2 _ £ 0, V a 0. 

Sz" 

During the entire cylinder deformation, 

N0 = -Np, 0 £ z £ L. 

At the rigid reinforcement, the cylinder is in Regime A and 

V = W = 0, 

M = -Mp, at z = 0. 

(B.3a) 

(B.3b) 

(B.3c) 

(B.4) 

(B.5a) 

(B.5b) 

When there is no hinge band, the center of the unsupported span is in 
Regime B; moreover , because of symmetry, there is no shear force. The 
boundary conditions a re , consequently. 

M , = Mp 

and 

S M , 
0 at z = L. 

(B.6) 

The remainder of the half-span is in Regime AB, so that 

S'V 
dz^ 

= 0, V a 0 for 0 < z < L. (B.7) 

If a hinge band appears in the region ^(t) £ z £ L, the entire band is in 
Regime B; therefore. 

M , = Mp 
S M , d^V 

0, | - j - £ 0, V a 0 for C £ z - L- (B.8) 
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f the half-span, which is still in Regime AB, In the remainder of the naii span, 

, , , / , , ^ - 0 V a Ofor 0 < z < C- '^ '^^ 
-Mp < M^ < Mo, ^^2 

(B.IO) 

The initial conditions of the cylinder motion are 

V(Z,ty) = W(Z,ty) = 0, 

Where t^ is the time when the yield pressure is first attained. 

U no hinge band occurs, we must solve differential equation B 1 
subject to initiaf conditions B.IO and boundary conditions and res rictions 
B 4-B 7! If there is a hinge band, conditions B.6 and B.7 are replaced by 
B.8 and B.9. 

The conditions on permissible discontinuities at the hinge circle 
C(t) are similar to those given for the circular plate and will not be 
discussed here. 

3. Solution for Pmax ~ ^b 

From the limit-load analysis,^ the yield p ressu re P^ is 

AH\ 

^ = ^"r L̂  
(B . i i ; 

where 

Pp = - ^ . {BAD 

Take 

V(z,t) = VL(t)-^, (B.13) 

where V, is the inward radial velocity at the midpoint of the span; V then 
meets the requirements stated in Eqs. B.5a and B.7. The integration of 
differential equation B.l twice with respect to z gives, using Eqs. B. I3 , 
B.4, B.12. and B.2, 

z^ ,,^3 d V j 
Mz(z,t) = [P,-P(t)]^+^ _ i ; +Ci(t)z +C2(t). (B.14) 



Applying b o u n d a r y cond i t i ons B.5b and B.6 r e s u l t s in 

Cz = - i ( P y - P o ) L ^ 

Cl = — [ P - P o + 3 ( P y - P o ) ] , 

d V , , 3 ( P - P „ ) 

dt 2 M 

(B . lSa ) 

(B.15b) 

(B.15c) 

and 

B . 1 3 , 

^z = ^ ( P - P o ) z ( L - z ) ^ + — ( P y - P p ) ( - L ^ + 3 z L ^ - z ^ ) . (B.15d) 

The so lu t ion to d i f f e r en t i a l equa t ion B . l 5c i s , us ing E q s . B.IO and 

•̂ '"' i r [ P ( T ) - Py] dT. (B.16) 

I n t e g r a t i n g Eq . B.16 wi th r e s p e c t to t i m e , we ob ta in 

WL(t) = J - f ( t - T ) [ P ( T ) - P y ] dT 
t„ 

and (B.17) 

W(z, t ) = - - WL(t) 

w h e r e WT is the d i s p l a c e m e n t a t z = L. 

S ince M is a cub ic in z and E q s . B.5b and B.6 a r e sa t i s f i ed , the 
cond i t ion that | M | £ Mp in the r e g i o n 0 < z < L i s equ iva l en t to 
r e q u i r i n g 

bM^ 
bz 

> 0 a t z = 0 (B.18) 



50 

and 

S ' M ^ , (B.19) 
^ < 0 at z = L. 

dz^ 

From Eq. B.15d, inequality B.18 implies 
(B.20) 

P(t) > 4Po - 3Py, ^ 

which by Eqs. B. l l and B.12 means 

L^<3AH. (B.2I) 

As in Ref. 2, it will be assumed that the problem configuration is such that 
inequality 6^21 is satisfied. Inequality B.19 is equivalent to, using 
Eq. B.15d, 

P(t) < 3Py - 2Po. (B.22) 

Define 

Pb = 3Py - 2Pp (B.23) 

as the load at which a hinge band is initiated at z = L. The condition that 
P(t) does not produce a hinge band is then 

P £ P, . (B.24) 
max b * ' 

The plastic deformation ends at time tf when the velocity vanishes. 
From Eq. B.16, tf is found from 

P(T)dT = P ( tf- ty) . (B.25) 
•^t 

y 

Using definitions A.22 for I and Pg, we then obtain the final plastic defor
mation from Eqs. B.17 and B.25 as 

4MP^ V P / L 
W(z,tf) = Jl- [l7^]^ 

y 

and 

""-''^'"^yV-tl- ^^''^ 



4. Solution for P _ , „ > P-b 

a. Interval t,, £ t £ tb y 

The solution given by Eqs. B.13-B.17 is applicable up to time 
tb when the p re s su re first reaches Pb and S^M /^z^ = 0 at z = L. At 
this time, a hinge circle ^(t) separating the region of the cylinder in 
Regime B from the region in Regime AB begins to move out from z = L. 

b. Interval tb £ t £ t ^ ^ ^ 

Consider first the hinge-band region where M^ = Mp. Differen
tial equation B.l becomes 

bV 
M ^ 7 = P - Pp. (B.27) 

The solution of Eq. B.27 is 

liV{z,t) = f [ P ( T ) - P p ] dT + fi(z), C £ z £ L, (B.28) 

where f2(z) is determined from the continuity of the velocity at the edge 
of the band. Letting 

V^(t) = V(at) , t ) , (B.29) 
« 

Q is found from 

n(C) = fiv^ - f [P(T)-Pp] dT, (B.30) 
t. 

where t is viewed as a function of ^ rather than the converse. 

In the region 0 £ z £ ^, take 

V(z,t) = V^(t) ^ . (B.31) 

The double integration of Eq. B.l with respect to z results in 

M^ = (Pp - P) ^ + ii±-' 1 ( l i ) + C3(t)z + C4(t). (B.32) 
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applying boundary condition B.5b at z ^ 0 and the continuity requirements 

that 

bUz _ „ (B.33) 

we arrive at 

1 V 2 ( B . 3 4 a ) 
c , = - l ( P y - P p ) L ^ 

C3 = ^ [ ( P - P o ) C ^ + 3 ( P y - P o ) L ' ] . 
(B.34b) 

it{^)- ^ [ ( P - P o ) C - ( P y - P o ) ^ ^ ] . 

M^ = ^ (C- z)^(P - Po) + ^ (-?' + 3i:̂ z - z^)(Py - Pp). 

0 £ z £ C , t b £ t £ t g . (B.34d) 

The condition that M^ should not exceed Mp in the vicinity of 

z = ^ requires that 

^ £ 0 atz = C-- (B.35) 

Using Eq. B.34d this is equivalent to 

(P-Pp) C 's 3(Py-Pp) L^ t ^ ^ £ t £ t ^ . (B.36) 

Following a similar line of reasoning to that employed in the circular 
plate problem, we will assume that the equality in Eq. B.36 holds while 
the pressure is increasing. The resulting solution can then be shown to 
satisfy all the requirements of the problem. Accordingly, we will take 

/3(P, -Po) 

'̂'̂  = -̂̂  / ¥iit^' 'b =̂  t ^ W x - (B.37a) 

and 

/3(P^-Po) 
m̂ax = \/p -P- (B-"b) 

V max ^0 



Using Eq. B.37a to simplify Eqs. B.34d and B.34c gives 

M 
^ = i - 2 ^ 3 — ' (B.38a) 

d / V A J / ( P - P o T 

and 

dt V C / ^ 7 n : . y 3 ( P y - P o ) ' 'b - ' - tmax- (B.38b) 

Equation B.38b can be integrated to give 

'̂ C 1 r ' , V^(t,) 

Since V^(tb) = VL(tb) and C(tb) = L, we have from Eq. B.16 that 

V^(t) = ^ [ P ( T ) - Pp] 
*= MVp(t)-Pp Î Jt̂  

"" T y 3 ( P y - Pp) J ^ [P(T) - Py] dTk (B.40) 

y 

so that, using Eqs. B.31 and B.37, we arr ive at 

ML 1 V3(P^-Po) 
V(z,t) = ^ f . ^ ^ J „ , J [P(T) - Po]̂ /̂  dT 

+ 1 J^[p(T)-Py] dT: 

y 

0 £ z £ r, t, £ t £ t . (B.41) 
^' b max ^ ' 

The displacement is found by integrating the velocity from tb to t and 
making use of Eq. B.17 to calculate W(z,tb); the result is 
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W(z,t) = 
ML V 3 ( P „ - P o ) JK 

(t - T ) [ P ( T ) - Pp] ' ' ' ' dT 

+ 4 / (t--r)[P(-^)-Py] dTk 

0 £ z £ C. tb £ t £ t^ (B.42) 

The function Q{z) can now be d e t e r m i n e d a s fo l lows: The func
tion C,{t) given in Eq. B.37a can be inve r t ed to give 

t = M C ) . L a C a C ^ ^ ^ , t b £ t £ t ^ ^ ^ . 

where 

-.[.. ^(0 -- P " |Pp + 3 ( P y - P p ) - Pb =s P( t ) £ P r 

(B.43) 

(B.44) 

Substituting from E q s . B.40 and B.43 into Eq . B .30 , we a r r i v e a t 

"(C) i l V ! ( V ^ ( [P( . ) -Po] -dT4 | [P(T)-P^]dTJ 

rliiO 
/ [ P ( T ) - Pp] dT, L a ^ a (; 

M m a x 

Using this r e s u l t in Eq. B.28 then g ives 

(B.45) 

MV(z,t) 
•^|3(z) 

[ P ( r ) - P p ] d T + | | r ' ^ P(r) - Py] dT 

rP(^) 
Z^m-W)], tP(T)-Pp]3/^dT, 

^ tb 

C £ z £ L, t, £ t £ t 
D c- (B.46) 
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Integrating the velocity from tb to t and using Eq. B,17 to find W{z,t, ), 
we obtain 

X T rti 

( t -T)[P(T)-P„] d T + - f / ( t -T ) [P (T) -P ] dT 
H(Z) ^ ^ \ ^ 

- / ( t-T)[P(T)-Po]V^dT, 
o) -̂ t. LV3(P - Pp, .J 

^ b 

C £ z £ L, tb £ t £ t^. (B.47) 

The upper limit of the interval of applicability of Eqs. B.46 and B.47 is 
tg, rather than t̂ ^^^ ,̂ because the reversa l of direction of the hinge-
circle motion does not affect the velocity distribution, and hence the dis
placement equation, inside the hinge band. 

As in the plate problem, all the functions appearing in the dis
continuity relations are continuous at ^ in the interval tb £ t £ tmax- Con
sequently, the solution obtained by making the assumption that Eq. B.37a 
holds is co r rec t for this interval. 

Since /3(L) = tb, we have from Eqs. B.46 and B.47 that the ve
locity and displacement at z = L are given by 

MVL(t) = f [ P ( T ) - P O ] dT + | - f [P(T)-Py*] dT, 

\ \ 

^WL(t) = r (t-T)[P(T)-Po] dT+4 r ^ (t-T)[P(T)-Py] dT, 

H) V 

tb £ t £ tg. (B.48) 

c. Interval t „ £ t £ t^ max £ 

Equations B.27-B.36 remain applicable for this time interval. 
However, making the assumption that ^(t) is still given by Eq. B.37a would 
lead to resul ts that would violate the discontinuity res t r ic t ions . Since the 
hinge circle now s tar ts to move back toward z = L, it passes through 
previously occupied positions for which f2(C) is known. Consequently, 
Eqs . B.46-B.48 remain valid for the velocity and displacement inside the 
hinge band. 
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Put t ing z = C in Eq- ^ - 4 6 , we can w r i t e 

, ^ ^ l / [ p ( T ) - P p ] d T . ^ p [ P ( . ) - P y ] c i r 
Cd) c J^s^,^) \ 

r^(0 

- y - - o y ^ t b 

Differentiating with r e s p e c t to t ime then g ives 

r^^^^ 3/2 
+ , ' r [p(T)-Po]'' 'dT. 

L - N / 3 ( P V - P O ) ^ 

(B.49) 

d / M _ J - f r [P(T)-Pp]dT+i[P(t)-Pp] 

dg dC [pp - P(P(a) ^ [P(/3(C)) - Po]'^'l (B 50) 

dC dt I C LV3(Py-Pp) J 

F r o m Eq. B.44 we have 

P(|3(C)) = Pp + 3(P -Po) ^ . (B.51) 

C 
so that Eq. B.50 b e c o m e s 

El iminat ing jLi(d/dt) (Vp/C) be tween E q s . B.34c and B.52 r e s u l t s in 

2 C - ^ / [ P ( T ) - P P ] dT + ( ;^(P-Pp) - 3 L ' ( P y - P o ) = 0. (B.53) 

The solution to Eq. B.53 sa t is fying the in i t i a l condi t ion tha t P(Crnax) " 

rnax ^^ 

C [ [ P ( T ) - P p ] d T = 3 L ^ ( P y - P p ) [ t - P ( 0 ] . 

Mo 
tmax £ t £ tg. (B.54) 
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Equation B.54 gives the hinge-circle motion for the time inter
val tmax - t £ tg. The motion ceases at tg when C(tg) = L; since 
P ( L ) = tb, tg is found from 

/•tc 
P ( T ) dT = Pb( tg - tb ) . B.55) 

As in the plate solution, the average pressure over the interval of the 
hinge-band motion is the pressure at which the band is initiated. 

The velocity distribution outside the hinge band will be found 
next. Using Eqs. B.31 and B.49, we have 

,iV(z,t) = - - [ P ( T ) - P P ] dT 

-(3(0 

LV3(Py - P„) J. 
[ P ( T ) - Pp]"' ' dT 

+ I f j r ^ [ P ( T ) - Py] dT, 0 £ z £ C, tmax s t £ tg, ( B . 5 6 ) 

An alternative expression which is easier to use to determine the displace
ment can be derived by considering 

V(z,t) = z f - ^ ( y ) d-̂  + V(z,tmax). 
tmax 

(B.57) 

which is obtained by integrating Eq. B.31. The integrand is given by 
Eq. B.34C and V(z,tmax) is found from Eq. B.41. Making these substitu
tions, we ar r ive at 

V(z,t) = - [p(T)-Pp] c F ) - ( ^ y - ^ ° ' ^ ; ^ ^ " 

V 3 ( P y - P p . ..tb 
| ' " ^ ^ ^ P ( T ) - P p ] ^ / ' d T . - f j ^ N p ( T ) - P y ] d T 

0 £ z £ C. tmax £ t £ tg. (B.58) 
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The displacement in the region Cmax ^ ^ ^ C(t) is found from 

/-tz r* 
W(z,t) = / V(z,T)dT•^ / V(Z,T) dT + W(z,tmax). (^.59) 

tmax z 

where t = t^ when C(t) = z. By Eq. B.54, t^ is found from 

z ' r ^ [P(T)-Pp]dT = 3L^(Py-Po)[tz-/3(z)]. (B.60) 
^/3(z) 

In the first integral of Eq. B.59, z > C so that the velocity is given by 
Eq. B.46; in the second integral, z < C and V is given by Eq. B.58. Making 
these substitutions, doing the integrations, evaluating W(z,tmax) from 
Eq. B,47, and using Eqs. B.34c and B.49, we arr ive at 

MW(z,t) = I T _ ( ' (t - T)|[P(T) - Po] ^ - (Py - Po) ^ } dT 

3z r 'b 
+ — / ( t -T)[p(T)-P J d T 

\ 

' T v m ^ ^ i (t-r)[P(T)-Pp]-dT 

^max - " - •,\'./, '•max ^ >• ^ i-c-

rtz 
' L . ( ' -^ ) [P(^) -Po]dT, Cmax =Sz£C( t ) , 

•̂ /3(z) 
(B.61) 

The displacement in the region 0 £ z £ Cmax can be written 

^(^•*) = f V(z,T) dT + W(z,tmax). •max). (B,62) 
m a x 

Trl^ETB^l' lA^ '° ' ^ ' ' ^ " ^'"^'^ "^ ^'i- ^-^^^ W(-.tmax) is evaluated 
n Z r a t i o ! ' " substitutions into Eq. B.62 an^^er forming the 

integration, we arrive at i- & 



^lW{z,t) ^ft/ <-f 
t m a x 

+ 1 ^ r ' ' ( t - T ) [ p ( T ) - P y ] d T 
2L 

L V 3 ( P • - P o ) i 
( t - T ) [ P ( T ) - P p ] ' ' ^ dT, 

' m a x ' '•max 
(B.63) 

The a p p r o p r i a t e d i scon t inu i ty condi t ions a r e sa t i s f i ed by the 
so lu t ion in the i n t e r v a l t m a x — t £ tg. F r o m E q s . B.34d and B.53, we 
have tha t 

dz2 z = C-

1^ r 
C dt j^^^^ 

[ P ( T ) - Pp] dT. (B.64) 

Since C i n c r e a s e s in th i s t i m e i n t e r v a l and the i n t e g r a l i s nonnega t ive , in

equa l i ty B.35 ho lds and the y ie ld condi t ion is not v io la t ed in the r e g i o n 

0 £ z £ C-

The v e l o c i t y and d i s p l a c e m e n t d i s t r i b u t i o n s at tg a r e , f r o m 
E q s . B .56 , B . 6 1 , B .63 , and B .55 , 

MV(2,t<.) [ P ( T ) - Py) dT, 0 £ z =; L , 

MW(z,t, ..-itr".-"{' P(-) - Po] ^^ - (Py -P.) ^ } ^- + I T { ' <'c - r)lHr) - Py] dr 

L V 3 ( P „ - P, 
r / Cc i ) [ P ( T ) - P O 1 dT-f I ( t c - T ) [ P { T ) - P „ ] dT, 

'/3U) 

U B . 6 5 ) 

and 

MW(z.t J = 4 | j ' ' (tc - T)|(P(T) - P.] - ^ , - (Py - Po) ^ 

I" "^-•^"^<^' -^ '^ '^*I : ;A(?; ;^ 

/"'•max 
( t c - T ) ( P ( T ) - P „ ] ' " d T , 

n £ z £ (̂ r. 
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In par 

and 

t i cu l a r , at z = L w h e r e t^ = tg and p(z) = tb , we have 

MVL(tg) = | r ^ P ( T ) - P y ] d T (B.66a) 

Ay 

MWL(tc) = I P ( t g - T ) [ P ( T ) - P y ] d T 

+ I ( t c - T ) [ P ( T ) - P p ] dT. (B.66b) 

d. In t e rva l tg £ t £ tr 

Since the hinge band has d i s a p p e a r e d , E q s . B . 1 3 , B . 1 5 c , and 
B.15d apply in this i n t e rva l as they did in the in i t i a l i n t e r v a l ty £ t £ tb . 
After pe r fo rming s t r a i g h t f o r w a r d i n t e g r a t i o n s wi th r e s p e c t to t i m e , we 
have, using Eq. B.66a, 

3z r' 
MV(z,t) = -j^ / [ P ( T ) - P y ] d T (B.67a) 

and 

MW(z,t) = ^ i j (t - T ) [ P ( T ) - P y ] dT - r "̂  (tg - T ) [ P ( T ) - P y ] dTl 

-Hi^W(z,tg), 0 £ z £ L, tg £ t £ t^. (B.67b) 

In p a r t i c u l a r . 

7. "• MVL(t) = -J [ P ( T ) - P y ] d T 
(B.68a) 

and 

3 r ' 5 /-*c 
' > = - ! (t - T ) [ P ( T ) - p ] dT - - (, T l l P l T l - P y l d T 

+ J ' ( t c - T ) [ P ( T ) - P „ ] < I dT, t;. =s t £ tf. 
(B.68b) 
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The time tf when the deformation ceases is determined from 
Eq. B.67a to be given by 

i: P ( T ) dT = Py( t f - ty ) (B.69) 

which is identical to Eq. B.25. As in the plate solution, the average p res 
sure during the deformation is the yield p ressu re . 

Evaluating WL(tf) from Eq. B.68b, using Eqs. B.23, B,55 and 
B.69, we have, after some algebraic rearrangement . 

MWL(tf) 
4 P , 

4 P b 

•^t 
• y 

T 

P ( T ) dT 

P ( T ) dT 

if 

if 

T-ty) P ( T ) dT 

(T-tb) P ( T ) dT. (B.70) 

Using definitions A.22 and A.78 for I, Pg, I*, and P*, the expression for 
the final displacement can be written 

WL(tf) = 
4MPV •(;-ii)-m (B.71) 
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APPENDIX C 

Beam Subject to Transverse Dynamic Load of General Pulse Shape 

1. Introduction 

The dynamic plastic deformation of an unsupported beam subjected 
to a concentrated transverse force at its center is treated by Symonds. ' 
He exhibits numerical results for the rectangular, tr iangular, and half-
sine pulse shapes shown in Fig. lb, le , and If. Additional resul ts for these 
shapes and for the linear and exponential decay shapes of Fig. Ic and Idwere 
obtained for this report. The derivation of the governing differential equa
tions is divided between Refs. 1 and 11. Accordingly, the important 
features of the derivation will be summarized here . 

2. Statement of Problem 

Consider the free-free beam shown in Fig. 2c having length 2L and 
m a s s y per unit length. The beam material is assumed to rigid, perfectly 
plastic with yield moment Mp. 

Under the action of a concentrated force F(t) at its center , the beam 
may proceed through several different types of motion depending on the 
pulse magnitude and shape. These types of motion and the corresponding 
governing equations are discussed below. 

Let v(x,t) and w(x,t) be the total velocity and displacement of the 
beam and V(x,t) and W(x,t) be the velocity and displacement produced by 
plastic deformation, all measured positive in the direction of the force 
Then, 

and 

V(x,t) = v(0,t) - v(L,t) 

W(x,t) = w(0,t) - w(L,t) 

with W(0,t) being the maximum deformation. We will write 

vo(t) = v(0,t), VL(t) = v(L,t), 

w„(t) = w(0,t), WL(t) = w(L,t), 
and 

(C.I) 

t) is 
beam. 

(C .2 ) 

Vo(t) = V(0,t), Wo(t) = W(0,t). 
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a. P h a s e 1. Rig id Body Motion 

Unti l and u n l e s s the m a x i m u m bending m o m e n t in the b e a m 
r e a c h e s the va lue Mo at t i m e ty, the b e a m m o v e s as a r ig id body such that 

and 

v(x , t ) = vp(t), V(x,t) = 0 

w(x , t ) = wp(t), W(x, t) = 0, 0 £ t £ t 

F r o m N e w t o n ' s equa t ion of m o t i o n , we have 

F( t ) = 2 , L ^ , 

(C.3) 

(C.4) 

so tha t i n t e g r a t i n g g ive s 

and 

vp(t) 

Wo(t) 
1 

27 L 

F ( T ) dT 

( t - T ) F ( T ) dT, 0 

(C.5) 

T h e bending m o m e n t in the r i g h t half of the b e a m is g iven by , 
us ing D ' A l e m b e r t ' s p r i n c i p l e . 

M(x,t) = - i - y ( L - x ) ^ ^ , (C.6) 

o r , us ing Eq . C .4 , 

M(x , t ) ( L - x ) 
4 L 

F ( t ) , 0 £ t £ t (C.7) 

The m a x i m u m m a g n i t u d e of the bending m o m e n t is a t the c e n t e r of the b e a m . 
S ince the t i m e ty is when y ie ld ing f i r s t o c c u r s . 

M(0 , ty ) = -Mp, 

so t h a t , f r o m E q s . C.7 and C . 8 , 

4Mp 
L • 

(C.8) 

(C.9) 
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b . P h a s e 2, Rigid Body Motion P l u s Ro ta t ion about C e n t e r P l a s t i c 

0 and a r o t a t i o n of the two 

Hinge 

At ty a p las t ic hinge f o r m s at z 
r ig id halves of the b e a m about i ts ce 
Only the r ight half of the b e a m will be c o n s i d e r e d h e r e 

n t e r is added to the r i g i d body m o t i o n . 

The equat ions of t r a n s l a t i o n and r o t a t i o n of the r i g h t half of the 

b e a m a r e 

iP 
dvg 

dt 

and 

dcu 
i F L - M o = Y Y 7 L ^ ^ 

( C I O ) 

where cu is the angular veloci ty of the r igh t half, m e a s u r e d p o s i t i v e c l o c k 
w i s e , and vg is the veloci ty of the c e n t e r of m a s s of the r i g h t half. I n t e 
gra t ion of E q s . C.IO g ives , using E q s . C.5 and C .9 , 

I ^ j <̂̂ ><̂ --

" 7 ^ / 
[ F ( T ) - Fy] dT, 

Since 

( C . l l ) 

and 

Vo = Vg + J C D L 

^L = Vg - -ICDL, 

we have 

and 

Vp(t) = toL 

7L j ^ [ F ( T ) - F y ] dT 

Wo(t) = — / ( t . ^ ) [ p ( ^ ) . ^ 1 
dT 

(C.12) 

(C.13) 



If no other plastic hinges form, the plastic deformation of the 
beam is entirely in Phase 2. The time tf when the plastic deformation ends 
is found from 
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Vp(tf) = 0, tf > ty. 

By Eqs. C.13 and C.14, tf is determined from 

/ 

•f 
F T dT Pv(tf- tv 

(C.14) 

(C.15) 

so that, as in the c i rcu lar -p la te and re inforced-ci rcular-shel l problems, 
the average value of the load during deformation is the yield load. Define 
impulse I per unit length, mean time tj^ean' ^"d effective force Fg of the 
pulse through 

and 

r F ( T ) d T , 

( T - t y ) F ( T ) d T , 

2t,. 

(C.16) 

Then from Eqs. C.13, C.15, and C.16, we have for the final maximum 
plastic deformation of the beajn 

Wp(tf ) 31-̂  
27LF, - ^ 

(C,17) 

The bending moment in the right half of the beam is found by 
again using D'Alembert 's principle to load the beam with inertia forces. 
The resul t is 

M(x,t) 

or , using Eqs. C.IO 

1 , dVg 1 , , , , , dto 
j 7 ( L - x ) ^ _ ^ , _ . , ( L . , ) 2 ( L + 2 x ) -

M(x,t) = ^ ^ ^ ^ [2xF(t)-(L-^2x) Fy]. 

(C.18) 

(C.I9) 
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The momen t is a m i n i m u m at x = 0 and is z e r o at x = L and x = ^ L F y / 
(F - F ); consequent ly , it has a m a x i m u m at s o m e point x ^ b e t w e e n the 
ze ros? ' If M(xm.t) r e a c h e s the value Mp at some t i m e t^, t hen a n o t h e r 
p l a s t i c hinge will form at Xm- Dif ferent ia t ing Eq. C.19 g ives 

SM ^ L ^ [ ( L - 3 x ) F ( t ) + 3xFy] , (C.20) 
ox 2L 

so that 

^ P L (C.21) 
^ m - 3 ( F - F y ) -

There fo re , 

L ( 2 F - 3 F v ) ^ 
Mfx t) = — ^ . C.22 

'^^ i^' ^ 1 0 8 ( F - F y ) 2 -

Let 

M(eb.th) = Mp, (C.23) 

so that a hinge fo rms at x = ^u ^t t i m e t, . Then F , [=F(t, )] i s the so lu t ion 
of, using Eqs . C.22, C.23, and C.9, 

8F^ - 63FyF'b + lOSPyPh - 54Fy = 0, (C.24) 

while 

Fv,L 

?y; 

The numer i ca l solution of cubic equat ion C.24 y i e ld s 

h 
^h = 3 ( F h - F y ) - (C.25) 

Pb = 5.7218Fy, 

k = 0-4039L. (C.26) 

^ P m a x > Ph ' oiiter h inges f o r m in i t i a l ly at x = ±^, . 

"^^ P h a s e 3. Rigid Body Motion P l u s Ro t a t i o n about Center and 
Outer P l a s t i c Hinges 

In P h a s e 3, the b e a m is c o m p o s e d of four r i g i d s e c t i o n s which 
ro ta te about p las t ic h inges at the o r ig in and + | ( t ) and which a l so t r a n s l a t e 
as a unit with ve loc i ty VT (t). 
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Again c o n s i d e r i n g the r i g h t half of the b e a m only , take Oip and 
vco as the a n g u l a r ve loc i ty and v e l o c i t y of the c e n t e r of m a s s , r e s p e c t i v e l y , 
of the b e a m s e c t i o n 0 £ x £ ?, and t ake tOi and Vgi a s the c o r r e s p o n d i n g 
q u a n t i t i e s for the s e c t i o n ? £ x £ L . The e q u a t i o n s of mo t ion a r e then 

and 

i p = yi dvcc 
dt 

i P | - 3 M o = ^ 7 ? ' f ^ . 

0 = 7 ( L - ? ) i ^ 

M 0 = n 7 ( L - e ) ^ dt 

(C.27) 

Since 

and 

dvp 
dt 

dvgo ^ _1_ , dcuo 
dt 2 ^ dt 

iC.Zi 

dvL ^ dvgi 2 (T p) ^"^1 
dt dt 2 ^ ^' dt 

the d i f f e r e n t i a l equa t i ons that d e t e r m i n e the shape of the p l a s t i c a l l y d e 

f o r m e d b e a m a r e 

and 

dVp 

dcoo 

dODi 

dWp 
dt 

Z£ 3 L F y ^ 

i ' -e~ 

3 P 6 L F y 

3 L F v dt (L - i)' 

V Q . 

3 L F y 

2 ( L - iV 

(C.29) 
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, ,_• =;Hor, f(t) is still an unknown quantity and must be 
However, the hinge position tj.x.} is SLIU a 
determined before Eqs. C.29 can be solved. 

The discontinuity in the acceleration b^/bt across a moving 
plastic hinge at ^(t) is shown in Ref. 11 to be given by 

5v 
St i+ 

av 
dt 

d? 
dt S4 ?+ 

bi 
= 0. (C.30) 

Since 

= Vgp >5(X>o 

and 

| • ^ 

^ci + i?"^i. (C.31) 

we find from Eqs. C.30, C.27, and C.29 that the differential equation for 
?(t) is 

d| 
dt 

1 
7(0)0 - Qi) 

3FyL 3FyL 

e 2(L-|)^ ? 
(C.32) 

The set of coupled nonlinear differential equations C.29 and C.32 is easily 
solved on a computer to determine the plastic-deformation history. 

Equation C,32 can be integrated in closed form; the resul t is 

/"t 
74'(3L-2|)(ajp-cUi) +7L^a3i = 3L j [F (T) - Fy] dT, (C.33) 

which can be verified by differentiation, using Eqs. C.29, Equation C,33 
can be derived directly from momentum considerations. ' 

The angular velocities cUp and cOj are equal at t-^ when the 
outer plastic hinge first appears and again at tg when ^ disappears . F rom 
Eq. C.33, we have that 

'C) = -ht^^^7-Fy] dT. C.34 

After tg, differential equations C.IO are applicable again. Consequently, 
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<^(t) = -TT f [ P ( T ) - Fy] dT + OD(tg) 
7L Jt^ 

= ^ f [ F ( ^ ) - F y ] d T , tg £ t £ t f 

(C.35) 

The plastic deformation stops at tf when a> = 0; tf is thus found from 

f ' P(T) 
t„ 

dT = F ( t f - t ), (C.36) 

which is identical to Eq. C.15. Therefore, even though differential equa
tions C.29 cannot be solved in closed fornn, the deformation interval can 
still be determined, and the form of the equation is unaffected by the occur
rence of outer hinges. 

The bending moment in the inner portion of the beam in Phase 3 
is given by 

M(x,t) = M„ - j (? - x)^ ^ + ±y{i - . m + 2x) ^ 

in the outer portion. 

M(x,t) = - J 7 ( L - x ) ^ ^ + ^ 7 ( L - x ) ^ ( L + 2 x - 3 | ) ^ . 

(C.37) 

(C.38) 

Using Eqs. C.27 and C.9, we have 

.t) = - ( ^ - - ) ^ ^ - L(e^-6gx^.4x3)Fy_ 0 ^ ^ ^ _̂ (c.39a) 

and 

M(x 

M(x,t) = 

24 45 

L(L-x)^(L + 2x- 3?) Fy 
4(L-4)3 

It is easily verified that 

M(0,t) = -Mo, M(C,t) = Mp, M(L,t) = 0, 

i £ X £ L. (C.39b) 

bU 
bx 

(C.40) 

0 at X = ?,L. 
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d. Phase 4. Outer Hinge Becomes a Hinge Band 

If, during the Phase 3 deformation, 

S^M 
3x2 

= 0 at X = I - , (C.41) 

a hinge band would begin to form at | . This is because at slightly higher 
loads Eq. C.39a would predict a saddle point at | with M exceeding Mp to 
the left of i. By Eq. C.39a, we have that Eq. C.41 is equivalent to 

F(t)e(t) = 3FyL. (C.42) 

Phase 4 motion does not occur for the load ranges presented in the resul ts 
of this report (see discussion in Ref. l) . 
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